A parallel scalable approach to short-range molecular dynamics on the CM-5

R. Giles, P. Tamayo
{"title":"A parallel scalable approach to short-range molecular dynamics on the CM-5","authors":"R. Giles, P. Tamayo","doi":"10.1109/SHPCC.1992.232636","DOIUrl":null,"url":null,"abstract":"Presents a scalable algorithm for short-range molecular dynamics which minimizes interprocessor communications at the expense of a modest computational redundancy. The method combines Verlet neighbor lists with coarse-grained cells. Each processing node is associated with a cubic volume of space and the particles it owns are those initially contained in the volume. Data structures for 'own' and 'visitor' particle coordinates are maintained in each node. Visitors are particles owned by one of the 26 neighboring cells but lying within an interaction range of a face. The Verlet neighbor list includes pointers to own-own and own-visitor interactions. To communicate, each of the 26 neighbor cells sends a corresponding block of particle coordinates using message-passing cells. The algorithms has the numerical properties of the standard serial Verlet method and is efficient for hundreds to thousands of particles per node allowing the simulation of large systems with millions of particles. Preliminary results on the new CM-5 supercomputer are described.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Presents a scalable algorithm for short-range molecular dynamics which minimizes interprocessor communications at the expense of a modest computational redundancy. The method combines Verlet neighbor lists with coarse-grained cells. Each processing node is associated with a cubic volume of space and the particles it owns are those initially contained in the volume. Data structures for 'own' and 'visitor' particle coordinates are maintained in each node. Visitors are particles owned by one of the 26 neighboring cells but lying within an interaction range of a face. The Verlet neighbor list includes pointers to own-own and own-visitor interactions. To communicate, each of the 26 neighbor cells sends a corresponding block of particle coordinates using message-passing cells. The algorithms has the numerical properties of the standard serial Verlet method and is efficient for hundreds to thousands of particles per node allowing the simulation of large systems with millions of particles. Preliminary results on the new CM-5 supercomputer are described.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CM-5上短程分子动力学的并行可扩展方法
提出了一种可扩展的短程分子动力学算法,以适度的计算冗余为代价,最大限度地减少了处理器间的通信。该方法将Verlet邻居列表与粗粒度单元结合起来。每个处理节点都与一个立方的空间体积相关联,它拥有的粒子是最初包含在该体积中的粒子。在每个节点中维护“自己”和“访客”粒子坐标的数据结构。访客是由26个相邻细胞中的一个拥有的粒子,但位于面部的相互作用范围内。Verlet邻居列表包括指向own-own和own-visitor交互的指针。为了进行通信,26个相邻单元中的每一个都使用消息传递单元发送相应的粒子坐标块。该算法具有标准串行Verlet方法的数值特性,并且对每个节点数百到数千个粒子有效,允许模拟具有数百万粒子的大型系统。介绍了新型CM-5超级计算机的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable parallel molecular dynamics on MIMD supercomputers On the influence of programming models on shared memory computer performance Using atomic data structures for parallel simulation Scalability issues for a class of CFD applications Scalability of data transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1