Pruning sparse signal models using interference

Bob L. Sturm, J. Shynk, Dae Hong Kim
{"title":"Pruning sparse signal models using interference","authors":"Bob L. Sturm, J. Shynk, Dae Hong Kim","doi":"10.1109/CISS.2009.5054763","DOIUrl":null,"url":null,"abstract":"Previous work on sparse approximations has shown that in the pursuit of a signal model using greedy iterative algorithms, the efficiency of the representation can be increased by considering the interference between selected atoms. However, in such interference-adaptive algorithms, atoms are still often selected that necessitate correction by subsequently chosen atoms. It is thus logical to remove these atoms from the representation so that they do not diminish the efficiency of the pursued signal model. In this paper, we propose to prune atoms from the model based on the degree and type of interference, and test its effectiveness in an interference-adaptive orthogonal matching pursuit algorithm.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Previous work on sparse approximations has shown that in the pursuit of a signal model using greedy iterative algorithms, the efficiency of the representation can be increased by considering the interference between selected atoms. However, in such interference-adaptive algorithms, atoms are still often selected that necessitate correction by subsequently chosen atoms. It is thus logical to remove these atoms from the representation so that they do not diminish the efficiency of the pursued signal model. In this paper, we propose to prune atoms from the model based on the degree and type of interference, and test its effectiveness in an interference-adaptive orthogonal matching pursuit algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用干扰修剪稀疏信号模型
先前关于稀疏逼近的研究表明,在使用贪婪迭代算法追求信号模型时,可以通过考虑选定原子之间的干扰来提高表示的效率。然而,在这种干扰自适应算法中,仍然经常选择原子,需要随后选择的原子进行校正。因此,从表示中去除这些原子是合乎逻辑的,这样它们就不会降低所追求的信号模型的效率。在本文中,我们提出了基于干扰程度和类型对模型进行原子修剪,并测试了其在干扰自适应正交匹配追踪算法中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1