{"title":"Ambipolar semiconductor receiver application in THz range","authors":"Y. Kamenev, V. Korzh, F. Sizov, N. Momot","doi":"10.1109/MSMW.2010.5546030","DOIUrl":null,"url":null,"abstract":"Preliminary estimates [1] showed that a narrow gap semiconductor with bipolar conductivity Hg<inf>1−x</inf>Cd<inf>x</inf>Te (x ∼ 0,2) may have a detecting properties at temperatures T ∼ (78 – 300) K (temperature range, which maintains bipolar conductivity) with unlimited spectral range. Completed experiments [2] at a wavelength λ ∼ 8 mm have shown that the volt-watt sensitivity of such models can reach up to 2 V/W and the calculated equivalent noise power was equal to 3.5·10<sup>−10</sup> W/Hz<sup>1/2</sup>, which is comparable with rectifier type receivers in the millimeter and submillimeter ranges.","PeriodicalId":129834,"journal":{"name":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","volume":"35 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2010.5546030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Preliminary estimates [1] showed that a narrow gap semiconductor with bipolar conductivity Hg1−xCdxTe (x ∼ 0,2) may have a detecting properties at temperatures T ∼ (78 – 300) K (temperature range, which maintains bipolar conductivity) with unlimited spectral range. Completed experiments [2] at a wavelength λ ∼ 8 mm have shown that the volt-watt sensitivity of such models can reach up to 2 V/W and the calculated equivalent noise power was equal to 3.5·10−10 W/Hz1/2, which is comparable with rectifier type receivers in the millimeter and submillimeter ranges.