A new mixing rule for predicting of frequency-dependent material parameters of composites

K. Rozanov, M. Koledintseva, J. Drewniak
{"title":"A new mixing rule for predicting of frequency-dependent material parameters of composites","authors":"K. Rozanov, M. Koledintseva, J. Drewniak","doi":"10.1109/URSI-EMTS.2010.5637159","DOIUrl":null,"url":null,"abstract":"A number of mixing rules are proposed in the literature to predict the dependence of effective material parameters of composites, the permittivity and permeability, on frequency and concentration. Alternatively to the mixing rules, properties of composites can be considered in terms of the Bergman-Milton theory (BMT), which employs the concept of the spectral function. All known mixing rules are particular cases of the BMT. Particularly, the Ghosh-Fuchs theory (GFT) has been proposed based on the BMT. The GFT is shown to agree well with measured material parameters of composites filled with ferromagnetic metal powders. However, the GFT is not convenient for use because of its complicated mathematical form. Herein, a simple analytic formulation of the GFT is proposed. The new mixing rule is based on the shape of the spectral function typical for the Bruggeman effective medium theory with the averaged depolarization factor of inclusions and the percolation thresholds introduced as fitting parameters. Since the permittivity and permeability of a composite are governed by the same mixing rule, these fitting parameters are found from the concentration dependence of permittivity of the composite for further use in the analysis of the frequency dependence of permeability. The proposed mixing law is valid for the case of nearly spherical shape of inclusions in the composite, e. g., stone-like inclusions.","PeriodicalId":404116,"journal":{"name":"2010 URSI International Symposium on Electromagnetic Theory","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 URSI International Symposium on Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2010.5637159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A number of mixing rules are proposed in the literature to predict the dependence of effective material parameters of composites, the permittivity and permeability, on frequency and concentration. Alternatively to the mixing rules, properties of composites can be considered in terms of the Bergman-Milton theory (BMT), which employs the concept of the spectral function. All known mixing rules are particular cases of the BMT. Particularly, the Ghosh-Fuchs theory (GFT) has been proposed based on the BMT. The GFT is shown to agree well with measured material parameters of composites filled with ferromagnetic metal powders. However, the GFT is not convenient for use because of its complicated mathematical form. Herein, a simple analytic formulation of the GFT is proposed. The new mixing rule is based on the shape of the spectral function typical for the Bruggeman effective medium theory with the averaged depolarization factor of inclusions and the percolation thresholds introduced as fitting parameters. Since the permittivity and permeability of a composite are governed by the same mixing rule, these fitting parameters are found from the concentration dependence of permittivity of the composite for further use in the analysis of the frequency dependence of permeability. The proposed mixing law is valid for the case of nearly spherical shape of inclusions in the composite, e. g., stone-like inclusions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种预测复合材料材料参数随频率变化的混合规则
文献中提出了许多混合规则来预测复合材料的有效材料参数,介电常数和磁导率对频率和浓度的依赖关系。除了混合规则之外,复合材料的性质可以用伯格曼-米尔顿理论(BMT)来考虑,该理论采用了谱函数的概念。所有已知的混合规则都是BMT的特殊情况。特别是在BMT的基础上提出了Ghosh-Fuchs理论(GFT)。结果表明,GFT与铁磁金属粉末填充复合材料的实测材料参数吻合较好。然而,由于GFT的数学形式复杂,使用起来并不方便。本文提出了GFT的一个简单解析表达式。新的混合规则是基于布鲁格曼有效介质理论中典型的谱函数形状,并引入夹杂物的平均去极化因子和渗透阈值作为拟合参数。由于复合材料的介电常数和磁导率受同一混合规律的支配,这些拟合参数是由复合材料介电常数的浓度依赖关系得到的,以便进一步用于分析磁导率的频率依赖关系。所提出的混合规律适用于复合材料中夹杂物接近球形的情况,如类石夹杂物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet analysis for an electromagnetic field The effect of gap size on dipole impedance using the induced EMF method Continuous one-sided beam scanning through broadside from backfire to forward fire by efficient surface-wave excitation RUFD: A general-purpose, non-iterative and matrix-free CEM algorithm for solving electromagnetic scattering and radiation problems in the frequency domain A crustal movement observation system using quasi-zenith satellites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1