A Hybrid Approach to Analyze Cybersecurity News Articles by Utilizing Information Extraction & Sentiment Analysis Methods

Piyush Ghasiya, K. Okamura
{"title":"A Hybrid Approach to Analyze Cybersecurity News Articles by Utilizing Information Extraction & Sentiment Analysis Methods","authors":"Piyush Ghasiya, K. Okamura","doi":"10.1142/s1793351x22500015","DOIUrl":null,"url":null,"abstract":"Cybersecurity is becoming indispensable for everyone and everything in the times of the Internet of Things (IoT) revolution. Every aspect of human society — be it political, financial, technological, or cultural — is affected by cyber-attacks or incidents in one way or another. Newspapers are an excellent source that perfectly captures this web of cybersecurity. By implementing various NLP techniques such as tf-idf, word embedding and sentiment analysis (SA) (machine learning method), this research will examine the cybersecurity-related articles from 18 major newspapers (English language online version) from six countries (three newspapers from each country) collected within one year from April 2018 till March 2019. The first objective is to extract the crucial events from each country, which we will achieve by our first step — ‘information extraction.’ The next objective is to find out what kind of sentiments those crucial issues garnered, which we will accomplish from our second step — ‘SA.’ SA of news articles would also help in understanding each ‘nation’s mood’ on critical cybersecurity issues, which can aid decision-makers in charting new policies.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x22500015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cybersecurity is becoming indispensable for everyone and everything in the times of the Internet of Things (IoT) revolution. Every aspect of human society — be it political, financial, technological, or cultural — is affected by cyber-attacks or incidents in one way or another. Newspapers are an excellent source that perfectly captures this web of cybersecurity. By implementing various NLP techniques such as tf-idf, word embedding and sentiment analysis (SA) (machine learning method), this research will examine the cybersecurity-related articles from 18 major newspapers (English language online version) from six countries (three newspapers from each country) collected within one year from April 2018 till March 2019. The first objective is to extract the crucial events from each country, which we will achieve by our first step — ‘information extraction.’ The next objective is to find out what kind of sentiments those crucial issues garnered, which we will accomplish from our second step — ‘SA.’ SA of news articles would also help in understanding each ‘nation’s mood’ on critical cybersecurity issues, which can aid decision-makers in charting new policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息抽取和情感分析的网络安全新闻文章混合分析方法
在物联网(IoT)革命时代,网络安全对每个人和每件事都变得不可或缺。人类社会的方方面面——无论是政治、金融、技术还是文化——都以这样或那样的方式受到网络攻击或事件的影响。报纸是完美捕捉网络安全网络的绝佳来源。本次研究将利用tf-idf、词嵌入、情感分析(SA)(机器学习方法)等多种NLP技术,对从2018年4月到2019年3月的一年内收集的6个国家(每个国家3份报纸)的18家主要报纸(英语在线版)的网络安全相关文章进行分析。第一个目标是提取每个国家的关键事件,这将通过我们的第一步——“信息提取”来实现。下一个目标是找出这些关键问题引发了什么样的情绪,我们将在第二步中完成这一目标。对新闻文章的分析也有助于了解每个国家在关键网络安全问题上的情绪,这有助于决策者制定新政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1