Variational Auto-Encoder Model and Federated Approach for Non-Intrusive Load Monitoring in Smart Homes

Shamisa Kaspour, A. Yassine
{"title":"Variational Auto-Encoder Model and Federated Approach for Non-Intrusive Load Monitoring in Smart Homes","authors":"Shamisa Kaspour, A. Yassine","doi":"10.1109/ISCC58397.2023.10217998","DOIUrl":null,"url":null,"abstract":"Non-Intrusive Load Monitoring (NILM) is a technique used for identifying individual appliances' energy consumption from a household's total power usage. This study examines a novel energy disaggregation model called Variational Auto-Encoder (VAE) with Federated Learning (FL). Specifically, VAE has a complex structure that resolves the issues in Short Sequence-to-Point (Short S2P) with fewer samples as input windows for each appliance. Short S2P cannot be generalized and might confront some challenges while disaggregating multi-state appliances. To this end, we examine a series of experiments using a real-life dataset of appliance-level power from the UK: UK-DALE. We also investigate additional protection of model parameters using Differential Privacy (DP). The findings show that FL with the VAE model achieves comparable performance to its centralized counterpart and improves all the metrics significantly compared to the Short S2P model.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-Intrusive Load Monitoring (NILM) is a technique used for identifying individual appliances' energy consumption from a household's total power usage. This study examines a novel energy disaggregation model called Variational Auto-Encoder (VAE) with Federated Learning (FL). Specifically, VAE has a complex structure that resolves the issues in Short Sequence-to-Point (Short S2P) with fewer samples as input windows for each appliance. Short S2P cannot be generalized and might confront some challenges while disaggregating multi-state appliances. To this end, we examine a series of experiments using a real-life dataset of appliance-level power from the UK: UK-DALE. We also investigate additional protection of model parameters using Differential Privacy (DP). The findings show that FL with the VAE model achieves comparable performance to its centralized counterpart and improves all the metrics significantly compared to the Short S2P model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能家居非侵入式负荷监测的变分自编码器模型与联邦方法
非侵入式负荷监测(NILM)是一种用于从家庭总用电量中识别单个电器能耗的技术。本文研究了一种新的能量分解模型——联邦学习的变分自编码器(VAE)。具体来说,VAE有一个复杂的结构,它解决了短序列到点(Short S2P)的问题,每个设备的输入窗口样本更少。短S2P不能一般化,在对多状态器具进行分解时可能面临一些挑战。为此,我们研究了一系列实验,使用来自英国的实际数据集:UK- dale的电器级电力。我们还研究了使用差分隐私(DP)对模型参数的额外保护。研究结果表明,与集中式模型相比,带有VAE模型的FL达到了相当的性能,并且与Short S2P模型相比,显著提高了所有指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1