ANALISIS SENTIMEN MASYARAKAT PADA KEBIJAKAN VAKSINASI COVID-19 DI TWITTER MENGGUNAKAN METODE MESIN VEKTOR PENDUKUNG DENGAN KERNEL RADIAL BASIS FUNCTION BERBASIS FITUR LEKSIKON

S. Mulyani, Sri Astuti Thamrin, S. Siswanto
{"title":"ANALISIS SENTIMEN MASYARAKAT PADA KEBIJAKAN VAKSINASI COVID-19 DI TWITTER MENGGUNAKAN METODE MESIN VEKTOR PENDUKUNG DENGAN KERNEL RADIAL BASIS FUNCTION BERBASIS FITUR LEKSIKON","authors":"S. Mulyani, Sri Astuti Thamrin, S. Siswanto","doi":"10.34312/jjps.v3i2.16663","DOIUrl":null,"url":null,"abstract":"Twitter is one of the popular social media used to get news quickly and briefly. After the outbreak of the COVID-19 virus and the government's policy to vaccinate against COVID-19 in Indonesia, more and more public opinion has been expressed through tweets. This makes the topic of COVID-19 vaccination interesting for sentiment analysis. Through sentiment analysis, information in the form of text data can be extracted to classify information related to positive or negative opinions. In this study, the classification of public opinion on COVID-19 vaccination was carried out using the supporting vector machine method without and with lexicon-based features. The manual labeling data used were 2981 tweets. The results of the classification of public opinion on COVID-19 vaccination in Indonesia with a supporting vector machine without the lexicon feature obtained accuracy, g-mean and AUC of 83%, 50% and 61.35%, respectively. Meanwhile, with lexicon-based features, the performance of the supporting vector machine method for classifying public opinion on COVID-19 vaccination in Indonesia obtained accuracy, g-mean and AUC of 90%, 86.63% and 87%, respectively. Based on these results, the performance of the supporting vector machine method with lexicon-based features provides better results for the performance of classifying of public opinion on COVID-19 vaccination compared to supporting vector machines without lexicon-based features.","PeriodicalId":315674,"journal":{"name":"Jambura Journal of Probability and Statistics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jambura Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34312/jjps.v3i2.16663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Twitter is one of the popular social media used to get news quickly and briefly. After the outbreak of the COVID-19 virus and the government's policy to vaccinate against COVID-19 in Indonesia, more and more public opinion has been expressed through tweets. This makes the topic of COVID-19 vaccination interesting for sentiment analysis. Through sentiment analysis, information in the form of text data can be extracted to classify information related to positive or negative opinions. In this study, the classification of public opinion on COVID-19 vaccination was carried out using the supporting vector machine method without and with lexicon-based features. The manual labeling data used were 2981 tweets. The results of the classification of public opinion on COVID-19 vaccination in Indonesia with a supporting vector machine without the lexicon feature obtained accuracy, g-mean and AUC of 83%, 50% and 61.35%, respectively. Meanwhile, with lexicon-based features, the performance of the supporting vector machine method for classifying public opinion on COVID-19 vaccination in Indonesia obtained accuracy, g-mean and AUC of 90%, 86.63% and 87%, respectively. Based on these results, the performance of the supporting vector machine method with lexicon-based features provides better results for the performance of classifying of public opinion on COVID-19 vaccination compared to supporting vector machines without lexicon-based features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在TWITTER上,人们对COVID-19疫苗接种政策的情感分析使用支持矢量引擎,以词典为基础的内核功能
推特是一种流行的社交媒体,用于快速、简短地获取新闻。在印尼新冠疫情爆发和政府出台新冠疫苗接种政策后,越来越多的舆论通过推特来表达。这使得COVID-19疫苗接种话题变得有趣,可以进行情绪分析。通过情感分析,可以提取文本数据形式的信息,对正面或负面意见的相关信息进行分类。本研究采用支持向量机方法对COVID-19疫苗接种舆情进行分类。使用的手动标记数据为2981条推文。使用不含词汇特征的支持向量机对印度尼西亚COVID-19疫苗接种舆情进行分类,准确率为83%,g-mean为50%,AUC为61.35%。同时,利用基于词典的特征,支持向量机方法对印度尼西亚COVID-19疫苗接种民意分类的准确率为90%,g-mean为86.63%,AUC为87%。基于这些结果,与不基于词典特征的支持向量机方法相比,基于词典特征的支持向量机方法在COVID-19疫苗接种舆情分类方面的表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Logistic Regression and Support Vector Machine in Breast Cancer Problem Prediksi Jumlah Wisatawan Menggunakan Metode Random Forest, Single Exponential Smoothing dan Double Exponential Smoothing di Provinsi NTB Perbandingan Fuzzy Time Series Lee untuk Meramalkan Nilai Tukar Petani di Provinsi Gorontalo Implementasi Metode Runtun Waktu dalam Pemodelan Total Harga Alat Kedokteran dan Kesehatan Analisis Faktor-Faktor Penghambat Penyelesaian Studi Mahasiswa Program Studi Matematika Universitas Sulawesi Barat Menggunakan PLS-SEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1