Impacts of Doppler Radar Data Assimilation on Precipitation Forecast of a Severe Convective Process in Hainan, China

Houyu Wu, Debin Su, Xingang Fan
{"title":"Impacts of Doppler Radar Data Assimilation on Precipitation Forecast of a Severe Convective Process in Hainan, China","authors":"Houyu Wu, Debin Su, Xingang Fan","doi":"10.1109/ICMO49322.2019.9026076","DOIUrl":null,"url":null,"abstract":"In this study, the Weather Research and Forecasting (WRF) model is used to simulate a severe convective process in Hainan, China on September 16, 2019. For the purpose of improving precipitation simulation and forecast, the WRF model’s three-dimensional Variational (3DVAR) assimilation system is used to assimilate CINRAD/SA Weather radar data. The assimilation results and precipitation forecast are compared and analyzed in order to study the influence of weather radar data assimilation on precipitation prediction. Four experiments of assimilation are carried out: 1) Control experiment: no assimilation of any data; 2) Only radar reflectivity data is assimilated; 3) Assimilating the radar radial velocity data; 4) Simultaneously assimilating the radar reflectivity and radial velocity data. The results show that the assimilation of the reflectivity data from the weather radar can effectively adjust the spatial distribution and magnitude of water vapor and temperature field in the background field. Assimilating the radar radial velocity data mainly improves the wind field of initial field. The assimilation of reflectivity can better adjust the precipitation forecast compared with the assimilation of radial velocity. Assimilating both reflectivity and radial velocity at the same time shows the best positive effect on precipitation forecast.","PeriodicalId":257532,"journal":{"name":"2019 International Conference on Meteorology Observations (ICMO)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Meteorology Observations (ICMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMO49322.2019.9026076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the Weather Research and Forecasting (WRF) model is used to simulate a severe convective process in Hainan, China on September 16, 2019. For the purpose of improving precipitation simulation and forecast, the WRF model’s three-dimensional Variational (3DVAR) assimilation system is used to assimilate CINRAD/SA Weather radar data. The assimilation results and precipitation forecast are compared and analyzed in order to study the influence of weather radar data assimilation on precipitation prediction. Four experiments of assimilation are carried out: 1) Control experiment: no assimilation of any data; 2) Only radar reflectivity data is assimilated; 3) Assimilating the radar radial velocity data; 4) Simultaneously assimilating the radar reflectivity and radial velocity data. The results show that the assimilation of the reflectivity data from the weather radar can effectively adjust the spatial distribution and magnitude of water vapor and temperature field in the background field. Assimilating the radar radial velocity data mainly improves the wind field of initial field. The assimilation of reflectivity can better adjust the precipitation forecast compared with the assimilation of radial velocity. Assimilating both reflectivity and radial velocity at the same time shows the best positive effect on precipitation forecast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多普勒雷达资料同化对海南一次强对流过程降水预报的影响
本文利用WRF模式对2019年9月16日发生在中国海南的一次强对流过程进行了数值模拟。为了改进降水模拟和预报,利用WRF模式的三维变分(3DVAR)同化系统同化CINRAD/SA天气雷达资料。为了研究气象雷达资料同化对降水预报的影响,对同化结果和降水预报进行了比较分析。同化实验分为四个部分:1)对照实验:不同化任何数据;2)仅同化雷达反射率数据;3)同化雷达径向速度数据;4)同时同化雷达反射率和径向速度数据。结果表明,同化气象雷达反射率资料可以有效调节背景场中水汽场和温度场的空间分布和大小。同化雷达径向速度数据主要是改善初始场的风场。与同化径向速度相比,同化反射率能更好地调整降水预报。同时吸收反射率和径向速度对降水预报的正向效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of L-band Wind Profile Radar System Research and Application of Meteorological Data Transmission System Based on Virtual Desktop Design and implementation of the maximum dimension algorithm for ice crystal particles recorded by 2D image probe Design and Implementation of Intelligent Support System for National Ground Observation Stations in Guizhou Design and Implementation of Signal Processing for Software Doppler Weather Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1