Statistical modelling of Polarization Fraction for classification of PolSAR images using GMM

Ayush Chauhan, H. Maurya, R. K. Panigrahi
{"title":"Statistical modelling of Polarization Fraction for classification of PolSAR images using GMM","authors":"Ayush Chauhan, H. Maurya, R. K. Panigrahi","doi":"10.1109/APMC.2016.7931377","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical model to classify the PolSAR image on the basis of Polarization Fraction (PF) of the backscattered wave. The basic principle behind PF, i.e., the relative power in the co-polarized and cross-polarized channel, is employed to distinguish between surface, double-bounce and volume scattering. We look to find the best fit model to the measured data by assuming it to be Gaussian distributed. A Radarsat-2 image of San Francisco is used to illustrate the results.","PeriodicalId":166478,"journal":{"name":"2016 Asia-Pacific Microwave Conference (APMC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2016.7931377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a statistical model to classify the PolSAR image on the basis of Polarization Fraction (PF) of the backscattered wave. The basic principle behind PF, i.e., the relative power in the co-polarized and cross-polarized channel, is employed to distinguish between surface, double-bounce and volume scattering. We look to find the best fit model to the measured data by assuming it to be Gaussian distributed. A Radarsat-2 image of San Francisco is used to illustrate the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GMM的偏振分数分类统计模型
提出了一种基于后向散射波偏振分数(PF)的偏振sar图像分类统计模型。PF背后的基本原理,即共极化和交叉极化通道中的相对功率,被用来区分表面、双反弹和体积散射。我们希望通过假设测量数据是高斯分布来找到最适合的模型。使用了旧金山的Radarsat-2图像来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A subwavelength microwave absorber with five resonating modes A compact planar MIMO monopole antenna with reduced mutual coupling for WLAN applications using ELC resonator Measurement of two-pot S-parameters of an amplifier using one-port vector network analyzer Generation of OAM mode using radially oriented Circular Array Graduate skills development of undergraduate students in wireless and guided electromagnetism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1