Predicting Forced Population Displacement Using News Articles

Sadra Abrishamkar, Forouq Khonsari
{"title":"Predicting Forced Population Displacement Using News Articles","authors":"Sadra Abrishamkar, Forouq Khonsari","doi":"10.5121/MLAIJ.2019.6101","DOIUrl":null,"url":null,"abstract":"The world has witnessed mass forced population displacement across the globe. Population displacement has various indications, with different social and policy consequences. Mitigation of the humanitarian crisis requires tracking and predicting the population movements to allocate the necessary resources and inform the policymakers. The set of events that triggers population movements can be traced in the news articles. In this paper, we propose the Population Displacement-Signal Extraction Framework (PD-SEF) to explore a large news corpus and extract the signals of forced population displacement. PD-SEF measures and evaluates violence signals, which is a critical factor of forced displacement from it. Following signal extraction, we propose a displacement prediction model based on extracted violence scores. Experimental results indicate the effectiveness of our framework in extracting high quality violence scores and building accurate prediction models.","PeriodicalId":347528,"journal":{"name":"Machine Learning and Applications: An International Journal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Applications: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/MLAIJ.2019.6101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The world has witnessed mass forced population displacement across the globe. Population displacement has various indications, with different social and policy consequences. Mitigation of the humanitarian crisis requires tracking and predicting the population movements to allocate the necessary resources and inform the policymakers. The set of events that triggers population movements can be traced in the news articles. In this paper, we propose the Population Displacement-Signal Extraction Framework (PD-SEF) to explore a large news corpus and extract the signals of forced population displacement. PD-SEF measures and evaluates violence signals, which is a critical factor of forced displacement from it. Following signal extraction, we propose a displacement prediction model based on extracted violence scores. Experimental results indicate the effectiveness of our framework in extracting high quality violence scores and building accurate prediction models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新闻文章预测被迫的人口迁移
世界目睹了全球范围内大规模的人口被迫流离失所。人口流离失所有各种迹象,具有不同的社会和政策后果。缓解人道主义危机需要跟踪和预测人口流动,以便分配必要的资源并向决策者提供信息。引发人口流动的一系列事件可以在新闻文章中找到。在本文中,我们提出了人口迁移-信号提取框架(PD-SEF)来挖掘大型新闻语料库并提取强迫人口迁移的信号。PD-SEF测量和评估暴力信号,这是被迫流离失所的关键因素。在信号提取之后,我们提出了一种基于提取的暴力得分的位移预测模型。实验结果表明,我们的框架在提取高质量的暴力得分和建立准确的预测模型方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Method for Prediction of Yogurt Quality and Consumers Preferencesusing Sensory Attributes and Image Processing Techniques Automatic Spectral Classification of Stars using Machine Learning: An Approach based on the use of Unbalanced Data Ai_Birder: Using Artificial Intelligence and Deep Learning to Create a Mobile Application that Automates Bird Classification DSAGLSTM-DTA: Prediction of Drug-Target Affinity using Dual Self-Attention and LSTM Multilingual Speech to Text using Deep Learning based on MFCC Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1