Two-stage Self-supervised MVS Network using Adaptive Depth Sampling

Yangyan Deng, Ding Yuan, Hong Zhang
{"title":"Two-stage Self-supervised MVS Network using Adaptive Depth Sampling","authors":"Yangyan Deng, Ding Yuan, Hong Zhang","doi":"10.1109/RCAR54675.2022.9872231","DOIUrl":null,"url":null,"abstract":"With the development of deep learning, multi-view stereo has achieved significant progress recently. Due to the expensive three-dimension supervision, self-supervised methods have more potential. In this work, a novel two-stage self-supervised learning framework for multi-view stereo is proposed to overcome photometric dependency and the effect of foreshortening. On considering that accurate depth hypothesis always plays an important role in estimating depth information. Therefore, this work concentrates on designing an adaptive depth sampling module based on neighboring spatial patches propagation, which is determined by the normal maps. From this point of view, a two-stage process is carried out in this work. In detail, the coarse initial depth maps and normal maps are obtained in the first stage, and then the network in the second stage refines the depth sampling module by taking the influence of foreshortening into account. Furthermore, the loss functions are developed including feature-metric consistency to overcome the photometric inconsistency caused by lighting variation. Moreover, the consistency between depth maps and normal maps is also employed in the loss functions. To evaluate the effectiveness of our proposed two-stage framework, the experiments are carried out on the DTU datasets. The experimental results demonstrate that our self-supervised learning framework has excellent performance compared to the baseline methods.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of deep learning, multi-view stereo has achieved significant progress recently. Due to the expensive three-dimension supervision, self-supervised methods have more potential. In this work, a novel two-stage self-supervised learning framework for multi-view stereo is proposed to overcome photometric dependency and the effect of foreshortening. On considering that accurate depth hypothesis always plays an important role in estimating depth information. Therefore, this work concentrates on designing an adaptive depth sampling module based on neighboring spatial patches propagation, which is determined by the normal maps. From this point of view, a two-stage process is carried out in this work. In detail, the coarse initial depth maps and normal maps are obtained in the first stage, and then the network in the second stage refines the depth sampling module by taking the influence of foreshortening into account. Furthermore, the loss functions are developed including feature-metric consistency to overcome the photometric inconsistency caused by lighting variation. Moreover, the consistency between depth maps and normal maps is also employed in the loss functions. To evaluate the effectiveness of our proposed two-stage framework, the experiments are carried out on the DTU datasets. The experimental results demonstrate that our self-supervised learning framework has excellent performance compared to the baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应深度采样的两阶段自监督MVS网络
随着深度学习技术的发展,多视点立体视觉技术近年来取得了重大进展。由于三维监控成本高昂,自监督方法具有更大的潜力。在这项工作中,提出了一种新的两阶段自监督学习框架,以克服光度依赖和视野缩短的影响。考虑到准确的深度假设在深度信息估计中一直起着重要的作用。因此,本文的工作重点是设计一个基于相邻空间斑块传播的自适应深度采样模块,该模块由法线贴图决定。从这个角度来看,在这项工作中进行了两个阶段的过程。其中,在第一阶段获得粗初始深度图和法线图,然后在第二阶段的网络中考虑到预缩的影响,对深度采样模块进行细化。在此基础上,建立了包含特征度量一致性的损失函数,克服了光照变化引起的光度不一致。此外,在损失函数中还采用了深度图与法线图的一致性。为了评估我们提出的两阶段框架的有效性,在DTU数据集上进行了实验。实验结果表明,与基线方法相比,我们的自监督学习框架具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth Recognition of Hard Inclusions in Tissue Phantoms for Robotic Palpation Design of a Miniaturized Magnetic Actuation System for Motion Control of Micro/Nano Swimming Robots Energy Shaping Based Nonlinear Anti-Swing Controller for Double-Pendulum Rotary Crane with Distributed-Mass Beams RCAR 2022 Cover Page Design and Implementation of Robot Middleware Service Integration Framework Based on DDS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1