A new text clustering method based on Huffman encoding algorithm

M. Muntean, L. Cabulea, H. Valean
{"title":"A new text clustering method based on Huffman encoding algorithm","authors":"M. Muntean, L. Cabulea, H. Valean","doi":"10.1109/AQTR.2014.6857838","DOIUrl":null,"url":null,"abstract":"Clustering of text data is a widely studied data mining problem and has a number of applications such as spam detection, document organization and indexing, IP-address streams, credit-card transaction streams, and so on. However, the clustering of text data is still in early stage, because the research focused so far on the case of quantitative or categorical data. In this paper we propose a new method for improving the clustering accuracy of text data. Our method encodes the string values of a dataset using Huffman encoding algorithm, and declares these attributes as integer in the cluster evaluation phase. In the experimental part, we compared the cluster label assigned by the proposed method to each instance of the dataset with its real category, and we obtained a better clustering accuracy than the one found with traditional methods. This method is useful when the dataset to be clustered has only string attributes, because in this case, a traditional clustering method does not recognize, or recognize with a low accuracy, the category of instances.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Clustering of text data is a widely studied data mining problem and has a number of applications such as spam detection, document organization and indexing, IP-address streams, credit-card transaction streams, and so on. However, the clustering of text data is still in early stage, because the research focused so far on the case of quantitative or categorical data. In this paper we propose a new method for improving the clustering accuracy of text data. Our method encodes the string values of a dataset using Huffman encoding algorithm, and declares these attributes as integer in the cluster evaluation phase. In the experimental part, we compared the cluster label assigned by the proposed method to each instance of the dataset with its real category, and we obtained a better clustering accuracy than the one found with traditional methods. This method is useful when the dataset to be clustered has only string attributes, because in this case, a traditional clustering method does not recognize, or recognize with a low accuracy, the category of instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于Huffman编码算法的文本聚类方法
文本数据的聚类是一个被广泛研究的数据挖掘问题,有许多应用,如垃圾邮件检测、文档组织和索引、ip地址流、信用卡事务流等。然而,文本数据的聚类还处于早期阶段,因为目前的研究主要集中在定量或分类数据的情况下。本文提出了一种提高文本数据聚类精度的新方法。我们的方法使用Huffman编码算法对数据集的字符串值进行编码,并在聚类评估阶段将这些属性声明为整数。在实验部分,我们将该方法分配给数据集每个实例的聚类标签与其真实类别进行了比较,得到了比传统方法更好的聚类精度。当要聚类的数据集只有字符串属性时,这种方法很有用,因为在这种情况下,传统的聚类方法不能识别实例的类别,或者识别的准确率很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Criteria for the localization of the monophase fault in medium voltage industrial networks with an isolated neutral Industrial application of micro geometrical cutting edge optimization for solid carbide boring tools Synthesis of train traffic control system with evolutionary computing Active disturbance rejection controller for a separation column DSS for operation of the lateral reservoirs during flood period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1