Sentiment Analysis on User Satisfaction Level of Cellular Data Service Using the K-Nearest Neighbor (K-NN) Algorithm

Desdwyatma Wahyu Wibawa, Muhammad Nasrun, C. Setianingsih
{"title":"Sentiment Analysis on User Satisfaction Level of Cellular Data Service Using the K-Nearest Neighbor (K-NN) Algorithm","authors":"Desdwyatma Wahyu Wibawa, Muhammad Nasrun, C. Setianingsih","doi":"10.1109/ICCEREC.2018.8711992","DOIUrl":null,"url":null,"abstract":"In today's modern era, social media is very close to people's lives. For each person can have up to more than 2 accounts for each social media such as Twitter, Instagram, Facebook, LINE, Path, and so forth. This makes the social media as the largest data collection of opinion from the public or internet users. To be able to retrieve data and draw conclusions of positive and negative values of an opinion on social media then do analysis of sentiment. The author analyzed the sentiments on the satisfaction of the telecommunication operator service users to the telecommunication service provider in Indonesia from each of their own official accounts or by using keywords related to telecommunication service providers in Indonesia. In performing the analysis, the author will use K-Nearest Neighbor (K-NN) analysis method with TF-IDF and Part-of-Speech (POS) Tagging. The results of this study obtained the average value of Precision 92,21 %, Recall 93,74%, F1-score 92,20%, and Accuracy 98,94%.","PeriodicalId":250054,"journal":{"name":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2018.8711992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In today's modern era, social media is very close to people's lives. For each person can have up to more than 2 accounts for each social media such as Twitter, Instagram, Facebook, LINE, Path, and so forth. This makes the social media as the largest data collection of opinion from the public or internet users. To be able to retrieve data and draw conclusions of positive and negative values of an opinion on social media then do analysis of sentiment. The author analyzed the sentiments on the satisfaction of the telecommunication operator service users to the telecommunication service provider in Indonesia from each of their own official accounts or by using keywords related to telecommunication service providers in Indonesia. In performing the analysis, the author will use K-Nearest Neighbor (K-NN) analysis method with TF-IDF and Part-of-Speech (POS) Tagging. The results of this study obtained the average value of Precision 92,21 %, Recall 93,74%, F1-score 92,20%, and Accuracy 98,94%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k -近邻(K-NN)算法的蜂窝数据服务用户满意度情感分析
在当今的现代时代,社交媒体与人们的生活非常接近。对于每个人来说,每个社交媒体(如Twitter、Instagram、Facebook、LINE、Path等)最多可以有2个以上的帐户。这使得社交媒体成为公众或互联网用户意见的最大数据收集。为了能够检索数据并得出社交媒体上观点的积极和消极价值的结论,然后进行情绪分析。作者通过各自的公众号或使用与印尼电信服务提供商相关的关键词,分析了电信运营商服务用户对印尼电信服务提供商的满意度感受。在进行分析时,作者将使用k -最近邻(K-NN)分析方法,结合TF-IDF和词性标注(POS)。本研究结果的平均精密度为92,21%,召回率为93,74%,f1评分为92,20%,准确率为98,94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compressive Sensing for Image Watermarking Discrete Wavelet Transform and Spread Spectrum Direction of Arrival Estimation in Low SNR Environment using Two Stages Sparse Reconstruction Microstrip Antenna and Tumbling Simulation for CubeSat on Inter-Satellite Link (ISL) System Detection of Pterygium Disease Using Forward Chaining and Viola Jones Algorithm Design of Single Poly Flash Memory Cell with Power Reduction Technique at Program Mode in 65nm CMOS Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1