Performance analysis of hierarchical agglomerative clustering in a wireless sensor network using quantitative data

T. Jain, D. Saini, S. Bhooshan
{"title":"Performance analysis of hierarchical agglomerative clustering in a wireless sensor network using quantitative data","authors":"T. Jain, D. Saini, S. Bhooshan","doi":"10.1109/ICISCON.2014.6965226","DOIUrl":null,"url":null,"abstract":"Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The motivation of our research is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it's quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.","PeriodicalId":193007,"journal":{"name":"2014 International Conference on Information Systems and Computer Networks (ISCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCON.2014.6965226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The motivation of our research is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it's quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于定量数据的无线传感器网络分层聚类性能分析
聚类是无线传感器网络中一种有用的机制,有助于解决可扩展性和数据传输问题。我们研究的动机是利用层次聚类(HAC)提供高效的聚类。如果感知节点之间的距离是使用它们的位置计算的,那么它就是定量的HAC。本文用定量数据比较了无线传感器网络中应用的各种聚类技术。在MATLAB中进行了仿真,并利用树形图对不同协议进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agro App: An application for healthy living Enhance matching in multi-dimensional image reconstruction using stereo image sequences DBIQS — An intelligent system for querying and mining databases using NLP Pros and cons of load balancing algorithms for cloud computing A real time scheduling algorithm for tolerating single transient fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1