A Joint Learning-Based Method for Multi-view Depth Map Super Resolution

Jing Li, Zhichao Lu, Gang Zeng, Rui Gan, Long Wang, H. Zha
{"title":"A Joint Learning-Based Method for Multi-view Depth Map Super Resolution","authors":"Jing Li, Zhichao Lu, Gang Zeng, Rui Gan, Long Wang, H. Zha","doi":"10.1109/ACPR.2013.89","DOIUrl":null,"url":null,"abstract":"Depth map super resolution from multi-view depth or color images has long been explored. Multi-view stereo methods produce fine details at texture areas, and depth recordings would compensate when stereo doesn't work, e.g. at non-texture regions. However, resolution of depth maps from depth sensors are rather low. Our objective is to produce a high-res depth map by fusing different sensors from multiple views. In this paper we present a learning-based method, and infer a high-res depth map from our synthetic database by minimizing the proposed energy. As depth alone is not sufficient to describe geometry of the scene, we use additional features like normal and curvature, which are able to capture high-frequency details of the surface. Our optimization framework explores multi-view depth and color consistency, normal and curvature similarity between low-res input and the database and smoothness constraints on pixel-wise depth-color coherence as well as on patch borders. Experimental results on both synthetic and real data show that our method outperforms state-of-the-art.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Depth map super resolution from multi-view depth or color images has long been explored. Multi-view stereo methods produce fine details at texture areas, and depth recordings would compensate when stereo doesn't work, e.g. at non-texture regions. However, resolution of depth maps from depth sensors are rather low. Our objective is to produce a high-res depth map by fusing different sensors from multiple views. In this paper we present a learning-based method, and infer a high-res depth map from our synthetic database by minimizing the proposed energy. As depth alone is not sufficient to describe geometry of the scene, we use additional features like normal and curvature, which are able to capture high-frequency details of the surface. Our optimization framework explores multi-view depth and color consistency, normal and curvature similarity between low-res input and the database and smoothness constraints on pixel-wise depth-color coherence as well as on patch borders. Experimental results on both synthetic and real data show that our method outperforms state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于联合学习的多视点深度图超分辨率方法
从多视点深度或彩色图像中获得超分辨率的深度图已经探索了很长时间。多视图立体方法在纹理区域产生精细的细节,深度记录将在立体不起作用时进行补偿,例如在非纹理区域。然而,深度传感器的深度图分辨率很低。我们的目标是通过融合来自多个视图的不同传感器来生成高分辨率深度图。在本文中,我们提出了一种基于学习的方法,并通过最小化所提出的能量从我们的合成数据库中推断出高分辨率深度图。由于深度本身不足以描述场景的几何形状,我们使用了法线和曲率等附加特征,这些特征能够捕获表面的高频细节。我们的优化框架探索了多视图深度和颜色一致性,低分辨率输入和数据库之间的法线和曲率相似性,以及像素级深度-颜色一致性和补丁边界的平滑约束。在合成数据和实际数据上的实验结果表明,我们的方法优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1