Parameter Estimation for Radial Basis Function Neural Network Design by Means of Two Symbiotic Algorithms

E. Parras-Gutierrez, M. J. del Jesus, V. Rivas, J. Merelo
{"title":"Parameter Estimation for Radial Basis Function Neural Network Design by Means of Two Symbiotic Algorithms","authors":"E. Parras-Gutierrez, M. J. del Jesus, V. Rivas, J. Merelo","doi":"10.1109/ADVCOMP.2008.20","DOIUrl":null,"url":null,"abstract":"Increasing the usability of traditional methods is one of the key issues on future trends in data mining. Nevertheless, most data mining algorithms need to be given a suitable set of parameters for every problem they face, thus methods to automatically search the values of these parameters are required. This paper introduces two co-evolutionary algorithms intended to automatically establish the parameters needed to design radial basis function neural networks. Results show that both algorithms can be effectively used to obtain good models, while reducing significantly the number of parameters to be fixed at hand.","PeriodicalId":269090,"journal":{"name":"2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADVCOMP.2008.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Increasing the usability of traditional methods is one of the key issues on future trends in data mining. Nevertheless, most data mining algorithms need to be given a suitable set of parameters for every problem they face, thus methods to automatically search the values of these parameters are required. This paper introduces two co-evolutionary algorithms intended to automatically establish the parameters needed to design radial basis function neural networks. Results show that both algorithms can be effectively used to obtain good models, while reducing significantly the number of parameters to be fixed at hand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于两种共生算法的径向基函数神经网络设计参数估计
提高传统方法的可用性是数据挖掘未来发展趋势的关键问题之一。然而,大多数数据挖掘算法需要为它们面临的每个问题提供一组合适的参数,因此需要自动搜索这些参数值的方法。本文介绍了两种用于自动建立径向基函数神经网络设计所需参数的协同进化算法。结果表明,这两种算法都能有效地获得良好的模型,同时显著减少了需要固定的参数数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Digital Repositories on the Grid UML-Based Representation for Textual Objects The Portuguese Grid Initiative A Biologically-Inspired Preventive Mechanism for Self-Healing of Distributed Software Components GridQTC: A Desktop Client for the Computational Chemistry Grid Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1