{"title":"Thermal to Visual Face Recognition using Transfer Learning","authors":"Yaswanth Gavini, B. Mehtre, A. Agarwal","doi":"10.1109/ISBA.2019.8778474","DOIUrl":null,"url":null,"abstract":"Inter-modality face recognition refers to the matching of face images between different modalities and is done usually by taking visual images as source and one of the other modalities as a target. Performing facial recognition between thermal to visual is a tough task because of nonlinear spectral characteristics of thermal and visual images. However, this is a desirable requirement for night-time security applications and military surveillance. In this paper, we propose a method to improve the thermal classifier accuracy by using transfer learning and as a result, the accuracy of thermal to visual face recognition gets increased. The proposed method is tested on RGB-D-T dataset (45900 images) and UND-Xl collection (4584 images). Experimental results show that the overall accuracy of thermal to visual face recognition by transferring the knowledge gets increased to 94.32% from 89.3% on RGB-D-T dataset and from 81.54% to 90.33% on UND-Xl dataset.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Inter-modality face recognition refers to the matching of face images between different modalities and is done usually by taking visual images as source and one of the other modalities as a target. Performing facial recognition between thermal to visual is a tough task because of nonlinear spectral characteristics of thermal and visual images. However, this is a desirable requirement for night-time security applications and military surveillance. In this paper, we propose a method to improve the thermal classifier accuracy by using transfer learning and as a result, the accuracy of thermal to visual face recognition gets increased. The proposed method is tested on RGB-D-T dataset (45900 images) and UND-Xl collection (4584 images). Experimental results show that the overall accuracy of thermal to visual face recognition by transferring the knowledge gets increased to 94.32% from 89.3% on RGB-D-T dataset and from 81.54% to 90.33% on UND-Xl dataset.