Evaluating Stream Classifiers with Delayed Labels Information

Vinicius M. A. Souza, T. P. D. Silva, Gustavo E. A. P. A. Batista
{"title":"Evaluating Stream Classifiers with Delayed Labels Information","authors":"Vinicius M. A. Souza, T. P. D. Silva, Gustavo E. A. P. A. Batista","doi":"10.1109/BRACIS.2018.00077","DOIUrl":null,"url":null,"abstract":"In general, data stream classifiers consider that the actual label of every unlabeled instance is available immediately after it issues a classification. The immediate availability of class labels allows the supervised monitoring of the data distribution and the error rate to verify whether the current classifier is outdated. Further, if a change is detected, the classifier has access to all recent labeled data to update the model. However, this assumption is very optimistic for most (if not all) applications. Given the costs and labor involved to obtain labels, failures in data acquisition or restrictions of the classification problem, a more reasonable assumption would be to consider the delayed availability of class labels. In this paper, we experimentally analyze the impact of latency on the performance of stream classifiers and call the attention of the community for the need to consider this critical variable in the evaluation process. We also make suggestions to avoid possible biased conclusions due to ignoring the delayed nature of stream problems. These are relevant contributions since few studies consider this variable in new algorithms proposals. Also, we propose a new evaluation measure (Kappa-Latency) that takes into account the arrival delay of actual labels to evaluate and compare a set of classifiers.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In general, data stream classifiers consider that the actual label of every unlabeled instance is available immediately after it issues a classification. The immediate availability of class labels allows the supervised monitoring of the data distribution and the error rate to verify whether the current classifier is outdated. Further, if a change is detected, the classifier has access to all recent labeled data to update the model. However, this assumption is very optimistic for most (if not all) applications. Given the costs and labor involved to obtain labels, failures in data acquisition or restrictions of the classification problem, a more reasonable assumption would be to consider the delayed availability of class labels. In this paper, we experimentally analyze the impact of latency on the performance of stream classifiers and call the attention of the community for the need to consider this critical variable in the evaluation process. We also make suggestions to avoid possible biased conclusions due to ignoring the delayed nature of stream problems. These are relevant contributions since few studies consider this variable in new algorithms proposals. Also, we propose a new evaluation measure (Kappa-Latency) that takes into account the arrival delay of actual labels to evaluate and compare a set of classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用延迟标签信息评估流分类器
一般来说,数据流分类器认为每个未标记实例的实际标签在发出分类后立即可用。类标签的即时可用性允许对数据分布和错误率进行监督监控,以验证当前分类器是否过时。此外,如果检测到更改,分类器可以访问所有最近标记的数据以更新模型。然而,这个假设对于大多数(如果不是全部)应用程序来说是非常乐观的。考虑到获取标签所涉及的成本和人工、数据获取失败或分类问题的限制,一个更合理的假设是考虑类标签的延迟可用性。在本文中,我们通过实验分析了延迟对流分类器性能的影响,并呼吁社区注意在评估过程中需要考虑这一关键变量。我们还提出了一些建议,以避免由于忽视流问题的延迟性而可能得出的有偏见的结论。这些都是相关的贡献,因为很少有研究在新的算法建议中考虑这个变量。此外,我们提出了一种新的评估度量(Kappa-Latency),它考虑了实际标签的到达延迟来评估和比较一组分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1