Collaborative Q-learning path planning for autonomous robots based on holonic multi-agent system

C. Lamini, Y. Fathi, Said Benhlima
{"title":"Collaborative Q-learning path planning for autonomous robots based on holonic multi-agent system","authors":"C. Lamini, Y. Fathi, Said Benhlima","doi":"10.1109/SITA.2015.7358432","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel collaborative Q-learning based path planning system using holonic multi agent system architecture, to use in autonomous mobile robot represented as a head-holon, for planing the optimal path between any starting point and a goal in a grid environment. The mobile robot has to explore the 2D grid randomly in order to update a local state action space Q-table relaying on a standalone decision. A global (Master) Q-table is then update based on collaborative policy between head holons, in which every holon has a preset confidence degree used as a decisive parameter in the Q-learning equation.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we present a novel collaborative Q-learning based path planning system using holonic multi agent system architecture, to use in autonomous mobile robot represented as a head-holon, for planing the optimal path between any starting point and a goal in a grid environment. The mobile robot has to explore the 2D grid randomly in order to update a local state action space Q-table relaying on a standalone decision. A global (Master) Q-table is then update based on collaborative policy between head holons, in which every holon has a preset confidence degree used as a decisive parameter in the Q-learning equation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全息多智能体系统的自主机器人协同q学习路径规划
在本文中,我们提出了一种新的基于协同q学习的路径规划系统,该系统采用全息多智能体系统架构,用于表示为头部全息的自主移动机器人,用于规划网格环境中任何起点和目标之间的最优路径。移动机器人必须随机探索二维网格,以便根据独立决策更新局部状态动作空间q表。然后基于头部全息之间的协作策略更新全局(主)q表,其中每个全息都有一个预设的置信度,作为q学习方程的决定性参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural network Incremental conductance MPPT algorithm for photovoltaic water pumping system Mapping discovery methodology in a pure P2P mediation system for XML schemas Strategic Alignment and Information System project portfolio optimization model Conceptual alignment between SPEM-based processes and CMMI Towards an interpretable Rules Ensemble algorithm for classification in a categorical data space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1