Road terrain detection: Avoiding common obstacle detection assumptions using sensor fusion

P. Shinzato, D. Wolf, C. Stiller
{"title":"Road terrain detection: Avoiding common obstacle detection assumptions using sensor fusion","authors":"P. Shinzato, D. Wolf, C. Stiller","doi":"10.1109/IVS.2014.6856454","DOIUrl":null,"url":null,"abstract":"Obstacle detection is a fundamental task for Advanced Driver Assistance Systems (ADAS) and Self-driving cars. Several commercial systems like Adaptive Cruise Controls and Collision Warning Systems depend on them to notify the driver about a risky situation. Several approaches have been presented in the literature in the last years. However, most of them are limited to specific scenarios and restricted conditions. In this paper we propose a robust sensor fusion-based method capable of detecting obstacles in a wide variety of scenarios using a minimum number of parameters. Our approach is based on the spatial-relationship on perspective images provided by a single camera and a 3D LIDAR. Experimental tests have been carried out in different conditions using the standard ROAD-KITTI benchmark, obtaining positive results.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Obstacle detection is a fundamental task for Advanced Driver Assistance Systems (ADAS) and Self-driving cars. Several commercial systems like Adaptive Cruise Controls and Collision Warning Systems depend on them to notify the driver about a risky situation. Several approaches have been presented in the literature in the last years. However, most of them are limited to specific scenarios and restricted conditions. In this paper we propose a robust sensor fusion-based method capable of detecting obstacles in a wide variety of scenarios using a minimum number of parameters. Our approach is based on the spatial-relationship on perspective images provided by a single camera and a 3D LIDAR. Experimental tests have been carried out in different conditions using the standard ROAD-KITTI benchmark, obtaining positive results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
道路地形检测:使用传感器融合避免常见的障碍物检测假设
障碍物检测是高级驾驶辅助系统(ADAS)和自动驾驶汽车的一项基本任务。一些商业系统,如自适应巡航控制和碰撞警告系统,都依赖于它们来通知驾驶员危险情况。在过去的几年中,文献中提出了几种方法。然而,它们中的大多数都局限于特定的场景和限制条件。在本文中,我们提出了一种基于传感器融合的鲁棒方法,该方法能够使用最少数量的参数在各种场景中检测障碍物。我们的方法是基于单个相机和3D激光雷达提供的透视图像的空间关系。采用ROAD-KITTI标准基准,在不同条件下进行了试验测试,取得了积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS precise positioning with pseudorange evaluation using 3-dimensional maps Vehicle safety evaluation based on driver drowsiness and distracted and impaired driving performance using evidence theory Concept-aware ensemble system for pedestrian detection Pose detection in truck and trailer combinations for advanced driver assistance systems Environment perception for inner-city driver assistance and highly-automated driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1