Power network planning with ant colony algorithm

Xun C. Huang, Z. Liu, X. Huo, Jian Tang, Zhi-An Yan, Huan Qi
{"title":"Power network planning with ant colony algorithm","authors":"Xun C. Huang, Z. Liu, X. Huo, Jian Tang, Zhi-An Yan, Huan Qi","doi":"10.1109/BICTA.2009.5338087","DOIUrl":null,"url":null,"abstract":"At present, mathematic model for power grid program has more requirement, traditional method can't fulfil it. Ant colony algorithm has been successfully used to solve NP problem in many fields. In this paper, a new ant colony algorithm of improving key parameters to solve power network planning is presented. For a given power network model, this algorithm will find out the best routing path only if it exits. Some examples show that this algorithm is more intelligent and efficient than other ones.","PeriodicalId":161787,"journal":{"name":"2009 Fourth International on Conference on Bio-Inspired Computing","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International on Conference on Bio-Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2009.5338087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At present, mathematic model for power grid program has more requirement, traditional method can't fulfil it. Ant colony algorithm has been successfully used to solve NP problem in many fields. In this paper, a new ant colony algorithm of improving key parameters to solve power network planning is presented. For a given power network model, this algorithm will find out the best routing path only if it exits. Some examples show that this algorithm is more intelligent and efficient than other ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蚁群算法的电网规划
目前,对电网规划数学模型的要求越来越高,传统的方法已不能满足要求。蚁群算法已成功地应用于许多领域的NP问题求解。本文提出了一种改进关键参数的蚁群算法来求解电网规划问题。对于给定的电网模型,该算法只在存在时才会找出最优路由路径。算例表明,该算法比其他算法具有更高的智能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A position-slots model for nucleosome assembly in the yeast genome based on integrated multi-platform positioning dataseis Model service discovery algorithm based on semantics Combining genetic algorithm and random projection strategy for (l, d)-motif discovery On the lower bounds of DNA word sets for DNA computing Method of extracting image geometric primitives based on immune algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1