Explaining predictive models to learning specialists using personas

Christopher A. Brooks, J. Greer
{"title":"Explaining predictive models to learning specialists using personas","authors":"Christopher A. Brooks, J. Greer","doi":"10.1145/2567574.2567612","DOIUrl":null,"url":null,"abstract":"This paper describes a method we have developed to convert statistical predictive models into visual narratives which explain student classifications. Building off of the work done within the user experience community, we apply the concept of personas to predictive models. These personas provide familiar and memorable descriptions of the learners identified by data mining activities, and bridge the gap between the data scientist and the learning specialist.","PeriodicalId":178564,"journal":{"name":"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge","volume":"111 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567574.2567612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper describes a method we have developed to convert statistical predictive models into visual narratives which explain student classifications. Building off of the work done within the user experience community, we apply the concept of personas to predictive models. These personas provide familiar and memorable descriptions of the learners identified by data mining activities, and bridge the gap between the data scientist and the learning specialist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用角色向学习专家解释预测模型
本文描述了我们开发的一种方法,将统计预测模型转换为解释学生分类的视觉叙述。在用户体验社区完成工作的基础上,我们将角色的概念应用于预测模型。这些人物角色为数据挖掘活动所识别的学习者提供了熟悉而难忘的描述,并弥合了数据科学家和学习专家之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning analytics in CSCL with a focus on assessment: an exploratory study of activity theory-informed cluster analysis Temporal learning analytics for computer based testing Statistical discourse analysis of online discussions: informal cognition, social metacognition and knowledge creation The learning analytics & knowledge (LAK) data challenge 2014 Designing pedagogical interventions to support student use of learning analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1