On the Capacity of Intelligent Reflecting Surface Aided MIMO Communication

Shuowen Zhang, Rui Zhang
{"title":"On the Capacity of Intelligent Reflecting Surface Aided MIMO Communication","authors":"Shuowen Zhang, Rui Zhang","doi":"10.1109/ISIT44484.2020.9174375","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting units. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. We consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Numerical results show that our proposed algorithm achieves substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperforms various benchmark schemes.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting units. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. We consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Numerical results show that our proposed algorithm achieves substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperforms various benchmark schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能反射面辅助MIMO通信容量研究
智能反射面(IRS)是一种很有前途的解决方案,通过调整大量的无源反射单元来适当地改变信号的传播,从而既经济又节能地提高无线通信容量。在本文中,我们旨在通过联合优化IRS反射系数和MIMO发射协方差矩阵来表征一般具有多天线发射机和接收机的IRS辅助点对点多输入多输出(MIMO)通信系统的基本容量限制。考虑频率平坦衰落信道下的窄带传输,提出了一种有效的交替优化算法,通过迭代优化传输协方差矩阵或其中一个反射系数,在其他系数不变的情况下找到局部最优解。数值结果表明,与没有IRS的传统MIMO信道相比,我们提出的算法实现了大幅度的容量提升,并且优于各种基准方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Community Detection with Secondary Latent Variables Capacity of Line-of-Sight MIMO Channels On the Randomized Babai Point A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs An Ideal Secret Sharing Scheme Realizing an Access Structure Based on a Finite Projective Plane of Order 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1