Scalable and Reliable Data Broadcast with Kascade

Stéphane Martin, Tom Buchert, Pierric Willemet, Olivier Richard, E. Jeanvoine, L. Nussbaum
{"title":"Scalable and Reliable Data Broadcast with Kascade","authors":"Stéphane Martin, Tom Buchert, Pierric Willemet, Olivier Richard, E. Jeanvoine, L. Nussbaum","doi":"10.1109/IPDPSW.2014.191","DOIUrl":null,"url":null,"abstract":"Many large scale scientific computations or Big Data analysis require the distribution of large amounts of data to each machine involved. That distribution of data often has a key role in the overall performance of the operation. In this paper, we present Kascade, a solution for the broadcast of data to a large set of compute nodes. We evaluate Kascade using a set of large scale experiments in a variety of experimental settings, and show that Kascade: (1) achieves very high scalability by organizing nodes in a pipeline; (2) can almost saturate a 1 Gbit/s network, even at large scale; (3) handles failures of nodes during the transfer gracefully thanks to a fault-tolerant design.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many large scale scientific computations or Big Data analysis require the distribution of large amounts of data to each machine involved. That distribution of data often has a key role in the overall performance of the operation. In this paper, we present Kascade, a solution for the broadcast of data to a large set of compute nodes. We evaluate Kascade using a set of large scale experiments in a variety of experimental settings, and show that Kascade: (1) achieves very high scalability by organizing nodes in a pipeline; (2) can almost saturate a 1 Gbit/s network, even at large scale; (3) handles failures of nodes during the transfer gracefully thanks to a fault-tolerant design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展和可靠的数据广播与Kascade
许多大规模的科学计算或大数据分析需要将大量数据分布到相关的每台机器上。数据的分布通常在操作的整体性能中起着关键作用。在本文中,我们提出了Kascade,一种将数据广播到大型计算节点集的解决方案。我们在各种实验设置中使用一组大规模实验来评估Kascade,并表明Kascade:(1)通过在管道中组织节点实现非常高的可扩展性;(2)即使在大规模情况下,也几乎可以使1 Gbit/s的网络饱和;(3)采用容错设计,优雅地处理传输过程中节点的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Parallel Algorithm for Two-Pass Connected Component Labeling RAW Introduction and Committees HPDIC Introduction and Committees An Evaluation of User Satisfaction Driven Scheduling in a Polymorphic Embedded System HPGC Introduction and Committees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1