GBOOST 2.0: A GPU-based tool for detecting gene-gene interactions with covariates adjustment in genome-wide association studies

M. Wang, Wei Jiang, R. Ma, Weichuan Yu
{"title":"GBOOST 2.0: A GPU-based tool for detecting gene-gene interactions with covariates adjustment in genome-wide association studies","authors":"M. Wang, Wei Jiang, R. Ma, Weichuan Yu","doi":"10.1109/BIBM.2016.7822734","DOIUrl":null,"url":null,"abstract":"Detecting gene-gene interaction patterns is important to reveal associations between genotype and complex diseases. This task, however, is computationally challenging. For example, in order to exhaustively detect interactions of 1,000,000 single nucleotide polymorphisms (SNPs) genotyped from thousands of individuals, we need to carry out 5×1011 statistical tests. To address the computational challenge, Wan et. al. [1] proposed a fast method named BOOST to exhaustively detect interactions of all SNP pairs. BOOST completes pairwise analysis of 360,000 SNPs in 60 hours on a standard desktop PC. As the interaction tests of SNP pairs are highly parallel, Yung et. al. [2] implemented the BOOST method in GPU and named it GBOOST. GBOOST usually takes about one and a half hours to finish genome-wide interaction analysis of a data set containing about 350,000 SNPs and 5,000 samples using Nvidia GeForce GTX 285 dispaly card.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"13 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting gene-gene interaction patterns is important to reveal associations between genotype and complex diseases. This task, however, is computationally challenging. For example, in order to exhaustively detect interactions of 1,000,000 single nucleotide polymorphisms (SNPs) genotyped from thousands of individuals, we need to carry out 5×1011 statistical tests. To address the computational challenge, Wan et. al. [1] proposed a fast method named BOOST to exhaustively detect interactions of all SNP pairs. BOOST completes pairwise analysis of 360,000 SNPs in 60 hours on a standard desktop PC. As the interaction tests of SNP pairs are highly parallel, Yung et. al. [2] implemented the BOOST method in GPU and named it GBOOST. GBOOST usually takes about one and a half hours to finish genome-wide interaction analysis of a data set containing about 350,000 SNPs and 5,000 samples using Nvidia GeForce GTX 285 dispaly card.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GBOOST 2.0:一种基于gpu的工具,用于检测全基因组关联研究中伴随协变量调整的基因-基因相互作用
检测基因-基因相互作用模式对于揭示基因型与复杂疾病之间的关系非常重要。然而,这项任务在计算上具有挑战性。例如,为了详尽地检测来自数千个个体的1,000,000个单核苷酸多态性(snp)基因分型的相互作用,我们需要进行5×1011统计测试。为了解决计算挑战,Wan等人提出了一种名为BOOST的快速方法,以详尽地检测所有SNP对的相互作用。BOOST在标准台式电脑上60小时内完成360,000个snp的成对分析。由于SNP对的相互作用测试具有高度并行性,Yung等人[2]在GPU中实现了BOOST方法,并将其命名为GBOOST。使用Nvidia GeForce GTX 285显卡,GBOOST通常需要一个半小时左右的时间来完成包含约35万个snp和5000个样本的数据集的全基因组相互作用分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1