On the Shape of Posterior Densities and Credible Sets in Instrumental Variable Regression Models with Reduced Rank: An Application of Flexible Sampling Methods Using Neural Networks

Lennart F. Hoogerheide, J. Kaashoek, H. V. Dijk
{"title":"On the Shape of Posterior Densities and Credible Sets in Instrumental Variable Regression Models with Reduced Rank: An Application of Flexible Sampling Methods Using Neural Networks","authors":"Lennart F. Hoogerheide, J. Kaashoek, H. V. Dijk","doi":"10.2139/ssrn.878266","DOIUrl":null,"url":null,"abstract":"textabstractLikelihoods and posteriors of instrumental variable regression models with strong\nendogeneity and/or weak instruments may exhibit rather non-elliptical contours in\nthe parameter space. This may seriously affect inference based on Bayesian credible\nsets. When approximating such contours using Monte Carlo integration methods like\nimportance sampling or Markov chain Monte Carlo procedures the speed of the algorithm\nand the quality of the results greatly depend on the choice of the importance or\ncandidate density. Such a density has to be `close' to the target density in order to\nyield accurate results with numerically efficient sampling. For this purpose we \nintroduce neural networks which seem to be natural importance or candidate densities, \nas they have a universal approximation property and are easy to sample from.\nA key step in the proposed class of methods is the construction of a neural network \nthat approximates the target density accurately. The methods are tested on a set of\nillustrative models. The results indicate the feasibility of the neural network\napproach.","PeriodicalId":163698,"journal":{"name":"Institutional & Transition Economics eJournal","volume":"10 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Institutional & Transition Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.878266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

Abstract

textabstractLikelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours using Monte Carlo integration methods like importance sampling or Markov chain Monte Carlo procedures the speed of the algorithm and the quality of the results greatly depend on the choice of the importance or candidate density. Such a density has to be `close' to the target density in order to yield accurate results with numerically efficient sampling. For this purpose we introduce neural networks which seem to be natural importance or candidate densities, as they have a universal approximation property and are easy to sample from. A key step in the proposed class of methods is the construction of a neural network that approximates the target density accurately. The methods are tested on a set of illustrative models. The results indicate the feasibility of the neural network approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降秩工具变量回归模型的后验密度和可信集的形状:神经网络灵活抽样方法的应用
具有强同质性和/或弱同质性的工具变量回归模型的似然和后验可能在参数空间中表现出相当非椭圆的轮廓。这可能会严重影响基于贝叶斯可信集的推理。当使用蒙特卡罗积分方法,如重要采样或马尔可夫链蒙特卡罗程序逼近这些轮廓时,算法的速度和结果的质量在很大程度上取决于重要性或候选密度的选择。这样的密度必须“接近”目标密度,以便通过数值上有效的采样产生准确的结果。为此,我们引入了似乎是自然重要性或候选密度的神经网络,因为它们具有普遍的近似性质并且易于采样。这类方法的关键步骤是构建一个精确逼近目标密度的神经网络。在一组说明性模型上对这些方法进行了验证。结果表明了神经网络方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Why Foreign Aid Fails Informal Finance: A Theory of Moneylenders Do Institutions Not Matter in China? Evidence from Manufacturing Enterprises Two Russian Stock Exchanges: Analysis of Relationships Human Capital Externalities Evidence from the Transition Economy of Russia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1