SVM-based miRNA: MiRNA∗ duplex prediction

Nestoras Karathanasis, I. Tsamardinos, A. Armen, Panayiota Poirazi
{"title":"SVM-based miRNA: MiRNA∗ duplex prediction","authors":"Nestoras Karathanasis, I. Tsamardinos, A. Armen, Panayiota Poirazi","doi":"10.1109/BIBE.2012.6399670","DOIUrl":null,"url":null,"abstract":"We address the problem of predicting the miRNA: miRNA* duplex stemming from a microRNA (miRNA) hairpin precursor and we present a SVM-based methodology to address it. Predicting the miRNA: miRNA* duplex is a first step towards identifying the mature miRNA, suggesting possible miRNA targets and ultimately, reducing experimentation effort, time, and cost. We measure the error in terms of the absolute difference of the true and predicted location of all of the four ends of the duplex and/or of each end separately. Our mean absolute error over all ends is 1.61 ± 2.24 nts as measured on a hold-out set of 220 miRNA hairpin precursor sequences. In addition, our tool precisely predicts (with 0 nt deviation) the starting position for 57% and 52% of the miRNAs in the 5' and 3' strands of the same dataset, significantly outperforming the state-of-the-art tool MaturePred which achieves 18% and 12%, respectively, on the same task. Overall, our method accurately identifies not only the starting nucleotide of novel miRNA: miRNA* duplexes - and thus individual miRNAs- but also their length, while outperforming the current state-of-the-art tool.","PeriodicalId":147263,"journal":{"name":"International Conferences on Biological Information and Biomedical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conferences on Biological Information and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We address the problem of predicting the miRNA: miRNA* duplex stemming from a microRNA (miRNA) hairpin precursor and we present a SVM-based methodology to address it. Predicting the miRNA: miRNA* duplex is a first step towards identifying the mature miRNA, suggesting possible miRNA targets and ultimately, reducing experimentation effort, time, and cost. We measure the error in terms of the absolute difference of the true and predicted location of all of the four ends of the duplex and/or of each end separately. Our mean absolute error over all ends is 1.61 ± 2.24 nts as measured on a hold-out set of 220 miRNA hairpin precursor sequences. In addition, our tool precisely predicts (with 0 nt deviation) the starting position for 57% and 52% of the miRNAs in the 5' and 3' strands of the same dataset, significantly outperforming the state-of-the-art tool MaturePred which achieves 18% and 12%, respectively, on the same task. Overall, our method accurately identifies not only the starting nucleotide of novel miRNA: miRNA* duplexes - and thus individual miRNAs- but also their length, while outperforming the current state-of-the-art tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的miRNA: miRNA *双工预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Science and technology: Genes, brain, stress and evolution" "Model-based strategies for biomedical image analysis" "Recent research activitiesin Europe: Supporting the evolution of healthcare" "An effective approach to Magnetoencephalography" "Frontiers of Neuroengineering with focus on brain machine interface and neural prostheses"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1