TweetSift: Tweet Topic Classification Based on Entity Knowledge Base and Topic Enhanced Word Embedding

Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh Nourbakhsh, Rui Fang
{"title":"TweetSift: Tweet Topic Classification Based on Entity Knowledge Base and Topic Enhanced Word Embedding","authors":"Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh Nourbakhsh, Rui Fang","doi":"10.1145/2983323.2983325","DOIUrl":null,"url":null,"abstract":"Classifying tweets into topic categories is necessary and important for many applications, since tweets are about a variety of topics and users are only interested in certain topical areas. Many tweet classification approaches fail to achieve high accuracy due to data sparseness issue. Tweet, as a special type of short text, in additional to its text, also has other metadata that can be used to enrich its context, such as user name, mention, hashtag and embedded link. In this demonstration, we present TweetSift, an efficient and effective real time tweet topic classifier. TweetSift exploits external tweet-specific entity knowledge to provide more topical context for a tweet, and integrates them with topic enhanced word embeddings for topic classification. The demonstration will show how TweetSift works and how it is incorporated with our social media event detection system.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Classifying tweets into topic categories is necessary and important for many applications, since tweets are about a variety of topics and users are only interested in certain topical areas. Many tweet classification approaches fail to achieve high accuracy due to data sparseness issue. Tweet, as a special type of short text, in additional to its text, also has other metadata that can be used to enrich its context, such as user name, mention, hashtag and embedded link. In this demonstration, we present TweetSift, an efficient and effective real time tweet topic classifier. TweetSift exploits external tweet-specific entity knowledge to provide more topical context for a tweet, and integrates them with topic enhanced word embeddings for topic classification. The demonstration will show how TweetSift works and how it is incorporated with our social media event detection system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TweetSift:基于实体知识库和主题增强词嵌入的Tweet主题分类
对许多应用程序来说,将tweet分类为主题类别是必要且重要的,因为tweet是关于各种主题的,而用户只对某些主题领域感兴趣。由于数据稀疏性问题,许多推文分类方法无法达到较高的准确率。Tweet作为一种特殊类型的短文本,在其文本之外,还有其他元数据可以用来丰富其上下文,如用户名、提及、标签和嵌入链接。在这个演示中,我们介绍了TweetSift,一个高效的实时推文主题分类器。TweetSift利用外部特定于tweet的实体知识为tweet提供更多的主题上下文,并将它们与主题增强的词嵌入集成在一起以进行主题分类。演示将展示TweetSift是如何工作的,以及它如何与我们的社交媒体事件检测系统相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model Approximate Discovery of Functional Dependencies for Large Datasets Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data A Personal Perspective and Retrospective on Web Search Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1