Application of machine learning for adaptive subtraction of multiple reflected waves

A. M. Kamashev, A. Duchkov
{"title":"Application of machine learning for adaptive subtraction of multiple reflected waves","authors":"A. M. Kamashev, A. Duchkov","doi":"10.18303/2619-1563-2023-1-54","DOIUrl":null,"url":null,"abstract":"This work is devoted to the development and testing of an algorithm for adaptive subtraction of multiple reflected waves using a convolutional neural network. The algorithm is one of the main steps in the method of suppression of multiple reflected waves based on the separation of wave forms in the Radon region. The paper considers the formulation of a problem for a neural network, the preparation of training and test data sets and the testing of the algorithm. Using a convolutional neural network allows to automate and speed up the adaptive subtraction procedure. The algorithm was tested on synthetic data. Testing shows the effective adaptation of multiple waves, as well as the importance of correctly constructing a model of multiples.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2023-1-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to the development and testing of an algorithm for adaptive subtraction of multiple reflected waves using a convolutional neural network. The algorithm is one of the main steps in the method of suppression of multiple reflected waves based on the separation of wave forms in the Radon region. The paper considers the formulation of a problem for a neural network, the preparation of training and test data sets and the testing of the algorithm. Using a convolutional neural network allows to automate and speed up the adaptive subtraction procedure. The algorithm was tested on synthetic data. Testing shows the effective adaptation of multiple waves, as well as the importance of correctly constructing a model of multiples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在多反射波自适应减法中的应用
本工作致力于使用卷积神经网络开发和测试一种算法,用于自适应减去多个反射波。该算法是基于Radon区域波形分离的多重反射波抑制方法的主要步骤之一。本文考虑了一个神经网络问题的表述、训练和测试数据集的准备以及算法的测试。使用卷积神经网络可以自动化和加速自适应减法过程。在合成数据上对算法进行了测试。实验证明了该方法对多波的有效适应,以及正确构建多波模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete element based numerical simulation of granular material fracturing Fan mechanism creating dynamic ruptures with high permeability at seismogenic depths of the Earth’s crust Research of the microstructure features of Bazhenov deposits and selection of the optimal model for creating a digital twin of the rock Multiscale geomechanical modeling taking into account the evolution of the microstructure of the geological media Transient electromagnetic cross-borehole exploration for monitoring the state of the cryolithozone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1