Facial expression invariant 3D face reconstruction from a single image using Deformable Generic Elastic Models

A. Moeini, K. Faez, Hosein Moeini
{"title":"Facial expression invariant 3D face reconstruction from a single image using Deformable Generic Elastic Models","authors":"A. Moeini, K. Faez, Hosein Moeini","doi":"10.1109/IRANIANMVIP.2013.6779940","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient method to reconstructing the 3D models of a human face from a single 2D face image robustness under a variety facial expressions using the Deformable Generic Elastic Model (D-GEM). We extended the Generic Elastic Model (GEM) approach and combined it with statistical information of the human face and deformed generic depth models by computing the distance around face lips. Particularly, we demonstrate that D-GEM can approximate the 3D shape of the input face image more accurately, achieving a better and higher quality of 3D face modeling and reconstruction robustness under a variety of facial expressions compared to the original GEM and Gender and Ethnicity-GEM (GE-GEM) approach. It has been tested on an available 3D face database, demonstrating its accuracy and robustness compared to the GEM and GE-GEM approach under a variety of imaging conditions, including facial expressions, gender and ethnicity.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose an efficient method to reconstructing the 3D models of a human face from a single 2D face image robustness under a variety facial expressions using the Deformable Generic Elastic Model (D-GEM). We extended the Generic Elastic Model (GEM) approach and combined it with statistical information of the human face and deformed generic depth models by computing the distance around face lips. Particularly, we demonstrate that D-GEM can approximate the 3D shape of the input face image more accurately, achieving a better and higher quality of 3D face modeling and reconstruction robustness under a variety of facial expressions compared to the original GEM and Gender and Ethnicity-GEM (GE-GEM) approach. It has been tested on an available 3D face database, demonstrating its accuracy and robustness compared to the GEM and GE-GEM approach under a variety of imaging conditions, including facial expressions, gender and ethnicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用可变形的通用弹性模型从单个图像重建面部表情不变的三维人脸
本文提出了一种利用可变形通用弹性模型(D-GEM)在多种面部表情下从单个二维人脸图像鲁棒重建人脸三维模型的有效方法。我们扩展了通用弹性模型(GEM)方法,将其与人脸统计信息和变形的通用深度模型相结合,通过计算人脸嘴唇周围的距离。特别是,我们证明了D-GEM可以更准确地近似输入人脸图像的三维形状,与原始GEM和Gender and Ethnicity-GEM (GE-GEM)方法相比,在各种面部表情下实现了更好和更高质量的三维人脸建模和重建鲁棒性。它已经在一个可用的3D人脸数据库上进行了测试,与GEM和GE-GEM方法相比,在各种成像条件下,包括面部表情、性别和种族,证明了它的准确性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated lung CT image segmentation using kernel mean shift analysis A simple and efficient approach for 3D model decomposition MRI image reconstruction via new K-space sampling scheme based on separable transform Fusion of SPECT and MRI images using back and fore ground information Real time occlusion handling using Kalman Filter and mean-shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1