Lightweight R-LWE-based privacy preservation scheme for smart grid network

A. Agarkar, H. Agrawal
{"title":"Lightweight R-LWE-based privacy preservation scheme for smart grid network","authors":"A. Agarkar, H. Agrawal","doi":"10.1504/IJICS.2019.10019163","DOIUrl":null,"url":null,"abstract":"Privacy preservation is one of the important research challenges in IoT applications. In one such IoT application; smart grid network, billing information and energy profiling information of the customer may be collected, aggregated, and forwarded to control centre for further analytics. Based on the research findings, traditional public key cryptography is not secured against quantum attacks. Our study is motivated by the recent developments in the lattice-cryptography schemes. This paper presents a lightweight R-LWE lattice-cryptography-based scheme to sign and encrypt message traffic in smart grid. Security analysis suggests that proposed scheme preserves the privacy of customer. Performance analysis shows that proposed scheme cause less communication overhead as compared to traditional public key cryptography yet maintain parallel with NTRU-based scheme and outperforms both formats of public key cryptography in regards to computation overhead.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2019.10019163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Privacy preservation is one of the important research challenges in IoT applications. In one such IoT application; smart grid network, billing information and energy profiling information of the customer may be collected, aggregated, and forwarded to control centre for further analytics. Based on the research findings, traditional public key cryptography is not secured against quantum attacks. Our study is motivated by the recent developments in the lattice-cryptography schemes. This paper presents a lightweight R-LWE lattice-cryptography-based scheme to sign and encrypt message traffic in smart grid. Security analysis suggests that proposed scheme preserves the privacy of customer. Performance analysis shows that proposed scheme cause less communication overhead as compared to traditional public key cryptography yet maintain parallel with NTRU-based scheme and outperforms both formats of public key cryptography in regards to computation overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于轻量级r - lwe的智能电网隐私保护方案
隐私保护是物联网应用中重要的研究挑战之一。在一个这样的物联网应用中;客户的智能电网网络、账单信息和能源概况信息可以被收集、汇总并转发到控制中心进行进一步分析。研究结果表明,传统的公钥加密在量子攻击下是不安全的。我们的研究是由最近的发展在格密码方案的动机。提出了一种基于轻量级R-LWE格密码学的智能电网消息流量签名和加密方案。安全性分析表明,该方案保护了用户的隐私。性能分析表明,与传统的公钥加密相比,该方案的通信开销更小,但与基于ntrus的方案保持并行,并且在计算开销方面优于两种格式的公钥加密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1