{"title":"The fundamentals of heavy-tails: properties, emergence, and identification","authors":"J. Nair, A. Wierman, B. Zwart","doi":"10.1145/2465529.2466587","DOIUrl":null,"url":null,"abstract":"Heavy-tails are a continual source of excitement and confusion across disciplines as they are repeatedly \"discovered\" in new contexts. This is especially true within computer systems, where heavy-tails seemingly pop up everywhere -- from degree distributions in the internet and social networks to file sizes and interarrival times of workloads. However, despite nearly a decade of work on heavy-tails they are still treated as mysterious, surprising, and even controversial.\n The goal of this tutorial is to show that heavy-tailed distributions need not be mysterious and should not be surprising or controversial. In particular, we will demystify heavy-tailed distributions by showing how to reason formally about their counter-intuitive properties; we will highlight that their emergence should be expected (not surprising) by showing that a wide variety of general processes lead to heavy-tailed distributions; and we will highlight that most of the controversy surrounding heavy-tails is the result of bad statistics, and can be avoided by using the proper tools.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2466587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
Heavy-tails are a continual source of excitement and confusion across disciplines as they are repeatedly "discovered" in new contexts. This is especially true within computer systems, where heavy-tails seemingly pop up everywhere -- from degree distributions in the internet and social networks to file sizes and interarrival times of workloads. However, despite nearly a decade of work on heavy-tails they are still treated as mysterious, surprising, and even controversial.
The goal of this tutorial is to show that heavy-tailed distributions need not be mysterious and should not be surprising or controversial. In particular, we will demystify heavy-tailed distributions by showing how to reason formally about their counter-intuitive properties; we will highlight that their emergence should be expected (not surprising) by showing that a wide variety of general processes lead to heavy-tailed distributions; and we will highlight that most of the controversy surrounding heavy-tails is the result of bad statistics, and can be avoided by using the proper tools.