{"title":"Fully Distributed Event-Driven Formation Control Over Directed Information Topologies","authors":"Tao Xu, Xiaojian Yi, G. Wen, Z. Duan","doi":"10.1109/ICUS55513.2022.9987012","DOIUrl":null,"url":null,"abstract":"This paper studies the formation control problem of networked second-order integrator systems from a distributed event-driven perspective, where the unknown nonlinearity is involved in the system model. An event-driven formation control scheme, which consists of a fully distributed event-driven control protocol and a fully distributed triggering function, is developed in this paper. In order to handle the nonlinear dynamics, the approximation property of the neural-network control is utilized. Adaptive gains instead of constant gains are designed in the control protocol, making the control scheme fully distributed. Using the proposed triggering mechanism, the control torque of each agent is a piecewise constant function, which is updated discontinuously and asynchronously. Moreover, the information topologies among different agents are directed and the prescribed formation configuration is time-varying. These settings are more practical, but brings some difficulties to control scheme design and theoretical analysis. It is shown that under the developed control scheme, each agent can achieve the prescribed formation configuration without causing the undesired Zeno behavior. Finally, numerical simulation is performed to confirm the validity of the main theorems.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9987012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the formation control problem of networked second-order integrator systems from a distributed event-driven perspective, where the unknown nonlinearity is involved in the system model. An event-driven formation control scheme, which consists of a fully distributed event-driven control protocol and a fully distributed triggering function, is developed in this paper. In order to handle the nonlinear dynamics, the approximation property of the neural-network control is utilized. Adaptive gains instead of constant gains are designed in the control protocol, making the control scheme fully distributed. Using the proposed triggering mechanism, the control torque of each agent is a piecewise constant function, which is updated discontinuously and asynchronously. Moreover, the information topologies among different agents are directed and the prescribed formation configuration is time-varying. These settings are more practical, but brings some difficulties to control scheme design and theoretical analysis. It is shown that under the developed control scheme, each agent can achieve the prescribed formation configuration without causing the undesired Zeno behavior. Finally, numerical simulation is performed to confirm the validity of the main theorems.