Research on KPCA and NS-LDA Combined Face Recognition

Lei Zhao, Jiwen Dong, Xiuli Li
{"title":"Research on KPCA and NS-LDA Combined Face Recognition","authors":"Lei Zhao, Jiwen Dong, Xiuli Li","doi":"10.1109/ISCID.2012.43","DOIUrl":null,"url":null,"abstract":"Kernel Principal Component Analysis (KPCA) is the promotion of PCA in kernel space, Null space LDA can be directly employed to choose a set of optimal projection vectors by preserving effective information of null space of within-class scatter maximizing ratio of the between-class scatter to the within-class scatter. This paper puts forward the method about KPCA plus NS-LDA for feature extraction and is applied in face recognition study, it enhances face recognition performance by virtue of combining the advantages of KPCA makes use of data high order characteristic and good divisibility of NS-LDA projection matrix. the experimental results show this method could effectively improve the recognition rate.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Kernel Principal Component Analysis (KPCA) is the promotion of PCA in kernel space, Null space LDA can be directly employed to choose a set of optimal projection vectors by preserving effective information of null space of within-class scatter maximizing ratio of the between-class scatter to the within-class scatter. This paper puts forward the method about KPCA plus NS-LDA for feature extraction and is applied in face recognition study, it enhances face recognition performance by virtue of combining the advantages of KPCA makes use of data high order characteristic and good divisibility of NS-LDA projection matrix. the experimental results show this method could effectively improve the recognition rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KPCA与NS-LDA结合人脸识别的研究
核主成分分析(KPCA)是主成分分析在核空间中的推广,零空间LDA通过保留类内散点零空间的有效信息,最大化类间散点与类内散点的比值,直接选择一组最优的投影向量。本文提出了KPCA加NS-LDA进行特征提取的方法,并将其应用于人脸识别研究中,结合KPCA的优点,利用数据的高阶特性和NS-LDA投影矩阵良好的可整除性,提高了人脸识别性能。实验结果表明,该方法能有效提高图像的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm of Slotted-ALOHA Based on Multichannel Statistics Research for Traceability Model of Material Supply Quality in Construction Project Auto-Tuning Mapping Strategy for Parallel CFD Program An Algorithm of Dim and Small Target Detection Based on Wavelet Transform and Image Fusion The Application of Mi200E in PLC Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1