A representational analysis of a temporal indeterminancy display in clinical events

M. Madkour, Hsing-yi Song, Jingcheng Du, Cui Tao
{"title":"A representational analysis of a temporal indeterminancy display in clinical events","authors":"M. Madkour, Hsing-yi Song, Jingcheng Du, Cui Tao","doi":"10.1109/BIBM.2016.7822673","DOIUrl":null,"url":null,"abstract":"This paper describes a proposition for representing temporal indeterminacy in events from clinical narratives using fuzzy sets membership functions. This approach leverages both temporal and semantic information of events and has been proved by representational analysis evaluation method. We demonstrate that membership functions' graphs can be used for representing temporal approximation and granularity of events. We also show that this approach is helpful for the construction of fine timeline of clinical events, and can be used for calculating accurate metrics for ordering events.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a proposition for representing temporal indeterminacy in events from clinical narratives using fuzzy sets membership functions. This approach leverages both temporal and semantic information of events and has been proved by representational analysis evaluation method. We demonstrate that membership functions' graphs can be used for representing temporal approximation and granularity of events. We also show that this approach is helpful for the construction of fine timeline of clinical events, and can be used for calculating accurate metrics for ordering events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床事件中时间不确定性表现的代表性分析
本文描述了一个用模糊集隶属函数表示临床叙述事件时间不确定性的命题。该方法充分利用了事件的时间信息和语义信息,并通过表征分析评价方法得到了验证。我们证明了隶属函数图可以用来表示事件的时间逼近和粒度。我们还表明,该方法有助于构建临床事件的精细时间线,并可用于计算精确的事件排序指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1