A Modified K-means User Grouping Design for HAP Massive MIMO Systems

Guorong Zhang, Ling-ge Jiang, Pingping Ji, Shiyi Zou, Chen He, Di He
{"title":"A Modified K-means User Grouping Design for HAP Massive MIMO Systems","authors":"Guorong Zhang, Ling-ge Jiang, Pingping Ji, Shiyi Zou, Chen He, Di He","doi":"10.1109/NaNA53684.2021.00057","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new user grouping scheme for the high altitude platform (HAP) massive Multiple-Input Multiple-Output (MIMO) systems based on statistical-eigenmode (SE). It has been proved that SE makes a major contribution to signal power for HAPs. Then, a Fubini-Study distance based modified K-means (FS-MKM) user grouping method is proposed aiming at reducing intra-group interference and improving system performance. The proposed modified K-means algorithm improves the initial points selection of the original K-means algorithm. The Fubini-Study distance is obtained based on the SEs of different users. Simulation results confirm that the proposed user grouping algorithm yields significant performance enhancement.","PeriodicalId":414672,"journal":{"name":"2021 International Conference on Networking and Network Applications (NaNA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA53684.2021.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new user grouping scheme for the high altitude platform (HAP) massive Multiple-Input Multiple-Output (MIMO) systems based on statistical-eigenmode (SE). It has been proved that SE makes a major contribution to signal power for HAPs. Then, a Fubini-Study distance based modified K-means (FS-MKM) user grouping method is proposed aiming at reducing intra-group interference and improving system performance. The proposed modified K-means algorithm improves the initial points selection of the original K-means algorithm. The Fubini-Study distance is obtained based on the SEs of different users. Simulation results confirm that the proposed user grouping algorithm yields significant performance enhancement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的HAP大规模MIMO系统K-means用户分组设计
针对高空平台(HAP)大规模多输入多输出(MIMO)系统,提出了一种基于统计特征模态(SE)的用户分组方案。事实证明,SE对HAPs的信号功率有重要贡献。然后,提出了一种基于Fubini-Study距离的改进K-means (FS-MKM)用户分组方法,以减少组内干扰,提高系统性能。改进的K-means算法改进了原K-means算法的初始点选取。Fubini-Study距离是根据不同用户的SEs得到的。仿真结果验证了所提出的用户分组算法的性能有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covert Communication in D2D Underlaying Cellular Network Online Scheduling of Machine Learning Jobs in Edge-Cloud Networks Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network Fatigue Detection Technology for Online Learning The Nearest Neighbor Algorithm for Balanced and Connected k-Center Problem under Modular Distance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1