Analysis of myocardial infarction in CMR images using hybrid level set based segmentation and regional ventricle contractility analysis

M. Muthulakshmi, G. Kavitha
{"title":"Analysis of myocardial infarction in CMR images using hybrid level set based segmentation and regional ventricle contractility analysis","authors":"M. Muthulakshmi, G. Kavitha","doi":"10.1109/ICAECT54875.2022.9807938","DOIUrl":null,"url":null,"abstract":"The assessment of left ventricle (LV) wall motion plays a major role in the diagnosis of myocardial infarction (MI). The aim of this work is to study regional contractility of LV in MI and normal subjects using magnetic resonance images. The segmentation of ventricular cavity is performed with corr-entropy based local bias field corrected image fitting (CELBIF) method. Myocardial contraction over a cardiac cycle is estimated for each sector based on Hausdorff distance and wall motion score index. The results show that CELBIF algorithm yields higher value for Dice coefficient (0.92) than LBIF method. The tracking of LV shows an increase in ventricular volume in infarcted subjects for entire cardiac cycle. Lower contraction is observed in infarcted LV cavities due to damage in myocardium sectors. The ventricular tracking and clinical indices detect abnormal cardiac behavior in MI subjects. The regional contractility analysis aids the identification of infarcted myocardial segment.","PeriodicalId":346658,"journal":{"name":"2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECT54875.2022.9807938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of left ventricle (LV) wall motion plays a major role in the diagnosis of myocardial infarction (MI). The aim of this work is to study regional contractility of LV in MI and normal subjects using magnetic resonance images. The segmentation of ventricular cavity is performed with corr-entropy based local bias field corrected image fitting (CELBIF) method. Myocardial contraction over a cardiac cycle is estimated for each sector based on Hausdorff distance and wall motion score index. The results show that CELBIF algorithm yields higher value for Dice coefficient (0.92) than LBIF method. The tracking of LV shows an increase in ventricular volume in infarcted subjects for entire cardiac cycle. Lower contraction is observed in infarcted LV cavities due to damage in myocardium sectors. The ventricular tracking and clinical indices detect abnormal cardiac behavior in MI subjects. The regional contractility analysis aids the identification of infarcted myocardial segment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合水平集分割和区域心室收缩力分析的CMR图像心肌梗死分析
评价左室壁运动对心肌梗死的诊断具有重要意义。本研究的目的是利用磁共振图像研究心肌梗死和正常人左室的局部收缩性。采用基于相关熵的局部偏置场校正图像拟合(CELBIF)方法对心室腔进行分割。根据豪斯多夫距离和壁运动评分指数估计每个扇区在一个心动周期内的心肌收缩。结果表明,CELBIF算法的Dice系数(0.92)高于LBIF方法。左室容积的跟踪显示梗死患者整个心脏周期内心室容积增加。由于心肌区损伤,左室梗死腔收缩减弱。心室跟踪和临床指标检测心肌梗死受试者的异常心脏行为。区域收缩力分析有助于心肌梗死段的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrical Vehicle Charging Station Mathematical Modeling and Stability Analysis Single Server Queueing Model with Multiple Working Vacation and with Breakdown A Deep Learning Based Image Steganalysis Using Gray Level Co-Occurrence Matrix Power Management in DC Microgrid Based on Distributed Energy Sources’ Available Virtual Generation Design and Techno-economic Analysis of a Grid-connected Solar Photovoltaic System in Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1