{"title":"Exploring Ethereum’s Blockchain Anonymity Using Smart Contract Code Attribution","authors":"Shlomi Linoy, Natalia Stakhanova, A. Matyukhina","doi":"10.23919/CNSM46954.2019.9012681","DOIUrl":null,"url":null,"abstract":"Blockchain users are identified by addresses (public keys), which cannot be easily linked back to them without out-of-network information. This provides pseudo-anonymity, which is amplified when the user generates a new address for each transaction. Since all transaction history is visible to all users in public blockchains, finding affiliation between related addresses can hurt pseudo-anonymity. Such affiliation information can be used to discriminate against addresses that were found to be related to a specific group, or can even lead to the de-anonymization of all addresses in the associated group, if out-of-network information is available on a few addresses in that group. In this work we propose to leverage a stylometry approach on Ethereum’s deployed smart contracts’ bytecode and high level source code, which is publicly available by third party platforms. We explore the extent to which a deployed smart contract’s source code can contribute to the affiliation of addresses. To address this, we prepare a dataset of real-world Ethereum smart contracts data, which we make publicly available; design and implement feature selection, extraction techniques, data refinement heuristics, and examine their effect on attribution accuracy. We further use these techniques to test the classification of real-world scammers data.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Blockchain users are identified by addresses (public keys), which cannot be easily linked back to them without out-of-network information. This provides pseudo-anonymity, which is amplified when the user generates a new address for each transaction. Since all transaction history is visible to all users in public blockchains, finding affiliation between related addresses can hurt pseudo-anonymity. Such affiliation information can be used to discriminate against addresses that were found to be related to a specific group, or can even lead to the de-anonymization of all addresses in the associated group, if out-of-network information is available on a few addresses in that group. In this work we propose to leverage a stylometry approach on Ethereum’s deployed smart contracts’ bytecode and high level source code, which is publicly available by third party platforms. We explore the extent to which a deployed smart contract’s source code can contribute to the affiliation of addresses. To address this, we prepare a dataset of real-world Ethereum smart contracts data, which we make publicly available; design and implement feature selection, extraction techniques, data refinement heuristics, and examine their effect on attribution accuracy. We further use these techniques to test the classification of real-world scammers data.