{"title":"Performance Scalability of a Cooperative Coevolution Multiobjective Evolutionary Algorithm","authors":"Tse Guan Tan, J. Teo, H. Lau","doi":"10.1109/CIS.2007.181","DOIUrl":null,"url":null,"abstract":"Recently, numerous Multiobjective Evolutionary Algorithms (MOEAs) have been presented to solve real life problems. However, a number of issues still remain with regards to MOEAs such as convergence to the true Pareto front as well as scalability to many objective problems rather than just bi-objective problems. The performance of these algorithms may be augmented by incorporating the coevolutionary concept. Hence, in this paper, a new algorithm for multiobjective optimization called SPEA2-CC is illustrated. SPEA2-CC combines an MOEA, Strength Pareto Evolutionary Algorithm 2 (SPEA2) with Cooperative Coevolution (CC). Scalability tests have been conducted to evaluate and compare the SPEA2- CC against the original SPEA2 for seven DTLZ test problems with a set of objectives (3 to 5 objectives). The results show clearly that the performance scalability of SPEA2-CC was significantly better compared to the original SPEA2 as the number of objectives becomes higher.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"180 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Recently, numerous Multiobjective Evolutionary Algorithms (MOEAs) have been presented to solve real life problems. However, a number of issues still remain with regards to MOEAs such as convergence to the true Pareto front as well as scalability to many objective problems rather than just bi-objective problems. The performance of these algorithms may be augmented by incorporating the coevolutionary concept. Hence, in this paper, a new algorithm for multiobjective optimization called SPEA2-CC is illustrated. SPEA2-CC combines an MOEA, Strength Pareto Evolutionary Algorithm 2 (SPEA2) with Cooperative Coevolution (CC). Scalability tests have been conducted to evaluate and compare the SPEA2- CC against the original SPEA2 for seven DTLZ test problems with a set of objectives (3 to 5 objectives). The results show clearly that the performance scalability of SPEA2-CC was significantly better compared to the original SPEA2 as the number of objectives becomes higher.