Landslide Recognition in High Resolution Remote Sensing Images Based on Semantic Segmentation

Q. Zhang, Jie Zhang, Wencheng Sun, Zhangjian Qin
{"title":"Landslide Recognition in High Resolution Remote Sensing Images Based on Semantic Segmentation","authors":"Q. Zhang, Jie Zhang, Wencheng Sun, Zhangjian Qin","doi":"10.1109/ICWOC55996.2022.9809850","DOIUrl":null,"url":null,"abstract":"In order to ensure the stable operation of high voltage transmission network, DeepLab V3+_SDF is proposed based on DeepLab V3+ for rapid and intelligent landslide detection from high resolution remote sensing images. Firstly, the backbone network is replaced by ResNet with squeeze-and-excitation (SE) attention mechanism to enhance the extraction of useful features. Secondly, astrous spatial pyramid pooling (ASPP) is reconstructed based on dense connection to expand the receptive field. More low-level features are then added to the decoder with feature pyramid networks plus (FPNP) to enhance detail recovery. Finally, a mixed loss function is proposed based on the pixel distribution to solve the sample imbalance problem. DeepLabV3+ _SDF is trained with self-made landslide remote sensing dataset. The experimental results show that the mean pixel accuracy(mPA) and mean intersection over union (mIoU) of DeepLab V3+_SDF on the landslide dataset reach 95.38 % and 85.27 %, which are 2.90 % and 7.76 % higher than those of DeepLabV3+. Finally, the trained DeepLab V3+_SDF is applied to Sichuan-Chongqing region in China, and the comparison results with manual interpretation show that the algorithm can be used for rapid identification of landslides in large-scale mountainous areas.","PeriodicalId":402416,"journal":{"name":"2022 10th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWOC55996.2022.9809850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to ensure the stable operation of high voltage transmission network, DeepLab V3+_SDF is proposed based on DeepLab V3+ for rapid and intelligent landslide detection from high resolution remote sensing images. Firstly, the backbone network is replaced by ResNet with squeeze-and-excitation (SE) attention mechanism to enhance the extraction of useful features. Secondly, astrous spatial pyramid pooling (ASPP) is reconstructed based on dense connection to expand the receptive field. More low-level features are then added to the decoder with feature pyramid networks plus (FPNP) to enhance detail recovery. Finally, a mixed loss function is proposed based on the pixel distribution to solve the sample imbalance problem. DeepLabV3+ _SDF is trained with self-made landslide remote sensing dataset. The experimental results show that the mean pixel accuracy(mPA) and mean intersection over union (mIoU) of DeepLab V3+_SDF on the landslide dataset reach 95.38 % and 85.27 %, which are 2.90 % and 7.76 % higher than those of DeepLabV3+. Finally, the trained DeepLab V3+_SDF is applied to Sichuan-Chongqing region in China, and the comparison results with manual interpretation show that the algorithm can be used for rapid identification of landslides in large-scale mountainous areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义分割的高分辨率遥感图像滑坡识别
为了保证高压输电网的稳定运行,在DeepLab V3+的基础上,提出了DeepLab V3+_SDF,实现高分辨率遥感影像滑坡快速智能检测。首先,将骨干网替换为ResNet,采用SE关注机制增强有用特征的提取;其次,在密集连接的基础上重构星形空间金字塔池(astrous space pyramid pooling, ASPP),扩大接收野;然后用特征金字塔网络加(FPNP)将更多的低级特征添加到解码器中,以增强细节恢复。最后,提出了一种基于像素分布的混合损失函数来解决样本不平衡问题。DeepLabV3+ _SDF用自制的滑坡遥感数据集进行训练。实验结果表明,DeepLabV3+ _SDF在滑坡数据集上的平均像元精度(mPA)和平均交联精度(mIoU)分别达到95.38%和85.27%,分别比DeepLabV3+提高2.90%和7.76%。最后,将训练好的DeepLab V3+_SDF应用于中国川渝地区,与人工解译的对比结果表明,该算法可用于大尺度山区滑坡的快速识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FPGA Based Traffic Sign Detection Using Support Vector Machine and Hybrid Filters A Physical-Layer Collision Awared All-Optical Time Slice Routing Optimization Method for High Reliable Low-Latency Communication in Transmission and Computing Resource Integration Networks Analysis and Research of Information Collection Method Based on Penetration Test Machine Learning Based Channel Estimation Optimization for OFDM Communication Systems Wireless Channel Estimation in Shipbuilding Scenario Based on Reconfigurable Intelligent Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1