Convergence analysis of cubature Kalman filter

J. Zarei, E. Shokri, H. Karimi
{"title":"Convergence analysis of cubature Kalman filter","authors":"J. Zarei, E. Shokri, H. Karimi","doi":"10.1109/ECC.2014.6862199","DOIUrl":null,"url":null,"abstract":"This paper investigates the stability analysis of cubature Kalman filter (CKF) for nonlinear systems with linear measurement. The certain conditions to ensure that the estimation error of CKF remains bounded are proved. Then, the effect of process noise covariance is investigated and an adaptive process noise covariance is proposed to deal with large estimation error. Accordingly, a modified CKF (MCKF) is developed to enhance the stability and accuracy of state estimation. The performance of the MCKF is compared to the CKF by two case studies. Simulation results demonstrate that the large estimation error may lead to instability of CKF while the MCKF is successfully able to estimate the states.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper investigates the stability analysis of cubature Kalman filter (CKF) for nonlinear systems with linear measurement. The certain conditions to ensure that the estimation error of CKF remains bounded are proved. Then, the effect of process noise covariance is investigated and an adaptive process noise covariance is proposed to deal with large estimation error. Accordingly, a modified CKF (MCKF) is developed to enhance the stability and accuracy of state estimation. The performance of the MCKF is compared to the CKF by two case studies. Simulation results demonstrate that the large estimation error may lead to instability of CKF while the MCKF is successfully able to estimate the states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
培养卡尔曼滤波器的收敛性分析
研究了具有线性测量的非线性系统的稳态卡尔曼滤波器(CKF)的稳定性分析。证明了CKF估计误差保持有界的若干条件。然后,研究了过程噪声协方差的影响,提出了一种自适应的过程噪声协方差来解决估计误差大的问题。为此,提出了一种改进的CKF (MCKF),以提高状态估计的稳定性和准确性。通过两个案例研究比较了MCKF和CKF的性能。仿真结果表明,大的估计误差可能导致CKF不稳定,而MCKF能够成功地估计状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness under saturated feedback: Strong iISS for a class of nonlinear systems Least squares end performance experiment design in multicarrier systems: The sparse preamble case Multi-model, multi-objective tuning of fixed-structure controllers Control systems on three-dimensional lie groups On solving periodic ℋ2-optimal fault detection and isolation problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1