Improving trading technical analysis with TensorFlow Long Short-Term Memory (LSTM) Neural Network

IF 3.9 Q1 Mathematics Journal of Finance and Data Science Pub Date : 2019-03-01 DOI:10.1016/j.jfds.2018.10.003
Chenjie Sang, Massimo Di Pierro
{"title":"Improving trading technical analysis with TensorFlow Long Short-Term Memory (LSTM) Neural Network","authors":"Chenjie Sang,&nbsp;Massimo Di Pierro","doi":"10.1016/j.jfds.2018.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we utilize a Long Short-Term Memory Neural Network to learn from and improve upon traditional trading algorithms used in technical analysis. The rationale behind our study is that the network can learn market behavior and be able to predict when a given strategy is more likely to succeed. We implemented our algorithm in Python pursuing Google's TensorFlow. We show that our strategy, based on a combination of neural network prediction, and traditional technical analysis, performs better than the latter alone.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"5 1","pages":"Pages 1-11"},"PeriodicalIF":3.9000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfds.2018.10.003","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918818300539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 46

Abstract

In this paper we utilize a Long Short-Term Memory Neural Network to learn from and improve upon traditional trading algorithms used in technical analysis. The rationale behind our study is that the network can learn market behavior and be able to predict when a given strategy is more likely to succeed. We implemented our algorithm in Python pursuing Google's TensorFlow. We show that our strategy, based on a combination of neural network prediction, and traditional technical analysis, performs better than the latter alone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用TensorFlow长短期记忆(LSTM)神经网络改进交易技术分析
在本文中,我们利用长短期记忆神经网络来学习和改进技术分析中使用的传统交易算法。我们研究背后的基本原理是,网络可以学习市场行为,并能够预测给定策略何时更有可能成功。我们利用Google的TensorFlow在Python中实现了我们的算法。我们表明,我们的策略,基于神经网络预测和传统的技术分析相结合,比后者单独表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Leveraging financial interdependencies in emerging markets via graph neural networks Enhancing bookkeeper decision support through graph representation learning for bank reconciliation Multifractal and low-dimensional representations of high-frequency return distribution sequences Finding money launderers using heterogeneous graph neural networks Integrating Choquet portfolios and machine learning interpretability for robust cryptocurrency investment strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1