BigCrypt for big data encryption

Abdullah Al Mamun, K. Salah, S. Al-Maadeed, T. Sheltami
{"title":"BigCrypt for big data encryption","authors":"Abdullah Al Mamun, K. Salah, S. Al-Maadeed, T. Sheltami","doi":"10.1109/SDS.2017.7939147","DOIUrl":null,"url":null,"abstract":"as data size is growing up, cloud storage is becoming more familiar to store a significant amount of private information. Government and private organizations require transferring plenty of business files from one end to another. However, we will lose privacy if we exchange information without data encryption and communication mechanism security. To protect data from hacking, we can use Asymmetric encryption technique, but it has a key exchange problem. Although Asymmetric key encryption deals with the limitations of Symmetric key encryption it can only encrypt limited size of data which is not feasible for a large amount of data files. In this paper, we propose a probabilistic approach to Pretty Good Privacy technique for encrypting large-size data, named as “BigCrypt” where both Symmetric and Asymmetric key encryption are used. Our goal is to achieve zero tolerance security on a significant amount of data encryption. We have experimentally evaluated our technique under three different platforms.","PeriodicalId":326125,"journal":{"name":"2017 Fourth International Conference on Software Defined Systems (SDS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Software Defined Systems (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS.2017.7939147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

as data size is growing up, cloud storage is becoming more familiar to store a significant amount of private information. Government and private organizations require transferring plenty of business files from one end to another. However, we will lose privacy if we exchange information without data encryption and communication mechanism security. To protect data from hacking, we can use Asymmetric encryption technique, but it has a key exchange problem. Although Asymmetric key encryption deals with the limitations of Symmetric key encryption it can only encrypt limited size of data which is not feasible for a large amount of data files. In this paper, we propose a probabilistic approach to Pretty Good Privacy technique for encrypting large-size data, named as “BigCrypt” where both Symmetric and Asymmetric key encryption are used. Our goal is to achieve zero tolerance security on a significant amount of data encryption. We have experimentally evaluated our technique under three different platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BigCrypt用于大数据加密
随着数据量的增长,云存储越来越适合存储大量的私人信息。政府和私人组织需要将大量的商业文件从一端传输到另一端。但是,如果在没有数据加密和通信机制安全的情况下进行信息交换,我们将失去隐私。为了保护数据不被黑客攻击,我们可以使用非对称加密技术,但它有一个密钥交换问题。非对称密钥加密虽然解决了对称密钥加密的局限性,但它只能加密有限大小的数据,这对于大量的数据文件来说是不可行的。在本文中,我们提出了一种概率方法来加密大数据的相当好的隐私技术,称为“BigCrypt”,其中使用对称和非对称密钥加密。我们的目标是在大量数据加密上实现零容忍安全性。我们在三个不同的平台上对我们的技术进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the general chair OSPF routing protocol performance in Software Defined Networks SDN in wide-area networks: A survey Automating Ethernet VPN deployment in SDN-based Data Centers An experimental Software Defined Security controller for Software Defined Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1