Is it Better to Average Probabilities or Quantiles?

K. C. Lichtendahl, Y. Grushka-Cockayne, R. L. Winkler
{"title":"Is it Better to Average Probabilities or Quantiles?","authors":"K. C. Lichtendahl, Y. Grushka-Cockayne, R. L. Winkler","doi":"10.2139/ssrn.2066806","DOIUrl":null,"url":null,"abstract":"We consider two ways to aggregate expert opinions using simple averages: averaging probabilities and averaging quantiles. We examine analytical properties of these forecasts and compare their ability to harness the wisdom of the crowd. In terms of location, the two average forecasts have the same mean. The average quantile forecast is always sharper: it has lower variance than the average probability forecast. Even when the average probability forecast is overconfident, the shape of the average quantile forecast still offers the possibility of a better forecast. Using probability forecasts for gross domestic product growth and inflation from the Survey of Professional Forecasters, we present evidence that both when the average probability forecast is overconfident and when it is underconfident, it is outperformed by the average quantile forecast. Our results show that averaging quantiles is a viable alternative and indicate some conditions under which it is likely to be more useful than averaging probabilities. This paper was accepted by Peter Wakker, decision analysis.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2066806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

Abstract

We consider two ways to aggregate expert opinions using simple averages: averaging probabilities and averaging quantiles. We examine analytical properties of these forecasts and compare their ability to harness the wisdom of the crowd. In terms of location, the two average forecasts have the same mean. The average quantile forecast is always sharper: it has lower variance than the average probability forecast. Even when the average probability forecast is overconfident, the shape of the average quantile forecast still offers the possibility of a better forecast. Using probability forecasts for gross domestic product growth and inflation from the Survey of Professional Forecasters, we present evidence that both when the average probability forecast is overconfident and when it is underconfident, it is outperformed by the average quantile forecast. Our results show that averaging quantiles is a viable alternative and indicate some conditions under which it is likely to be more useful than averaging probabilities. This paper was accepted by Peter Wakker, decision analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平均概率好还是分位数好?
我们考虑了两种使用简单平均数来汇总专家意见的方法:平均概率和平均分位数。我们考察了这些预测的分析性质,并比较了它们利用大众智慧的能力。就位置而言,两个平均预报的平均值相同。平均分位数预测总是更清晰:它的方差低于平均概率预测。即使当平均概率预测过于自信时,平均分位数预测的形状仍然提供了更好预测的可能性。利用《专业预测者调查》(Survey of Professional forecasts)对国内生产总值(gdp)增长和通胀的概率预测,我们提出证据表明,无论是在平均概率预测过于自信还是过于自信时,它的表现都优于平均分位数预测。我们的结果表明,平均分位数是一种可行的替代方案,并指出在某些条件下,它可能比平均概率更有用。这篇论文被决策分析的Peter Wakker接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1