Distinct Element Simulation of Mechanical Properties of Hypothetical CNT Nanofabrics

I. Ostanin
{"title":"Distinct Element Simulation of Mechanical Properties of Hypothetical CNT Nanofabrics","authors":"I. Ostanin","doi":"10.14529/JSFI190208","DOIUrl":null,"url":null,"abstract":"A universal framework for modeling composites and fabrics of micro- and nanofibers, such as carbon nanotubes, carbon fibers and amyloid fibrils, is presented. Within this framework, fibers are represented with chains of rigid bodies, linked with elastic bonds. Elasticity of the bonds utilizes recently developed enhanced vector model formalism. The type of interactions between fibers is determined by their nature and physical length scale of the simulation. The dynamics of fibers is computed using the modification of rigid particle dynamics module of the waLBerla multiphysics framework. Our modeling system demonstrates exceptionally high parallel performance combined with the physical accuracy of the modeling. The efficiency of our technique is demonstrated with an illustrative mechanical test on a hypothetical carbon nanotube textile. In this example, the elasticity of the fibers represents the coarse-grained covalent bond within CNT surface, whereas interfiber interactions represent coarse-grained van der Waals forces between cylindrical segments of nanotubes. Numerical simulation demonstrates stability and extremal strength of a hypothetical carbon nanotube fabric.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI190208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A universal framework for modeling composites and fabrics of micro- and nanofibers, such as carbon nanotubes, carbon fibers and amyloid fibrils, is presented. Within this framework, fibers are represented with chains of rigid bodies, linked with elastic bonds. Elasticity of the bonds utilizes recently developed enhanced vector model formalism. The type of interactions between fibers is determined by their nature and physical length scale of the simulation. The dynamics of fibers is computed using the modification of rigid particle dynamics module of the waLBerla multiphysics framework. Our modeling system demonstrates exceptionally high parallel performance combined with the physical accuracy of the modeling. The efficiency of our technique is demonstrated with an illustrative mechanical test on a hypothetical carbon nanotube textile. In this example, the elasticity of the fibers represents the coarse-grained covalent bond within CNT surface, whereas interfiber interactions represent coarse-grained van der Waals forces between cylindrical segments of nanotubes. Numerical simulation demonstrates stability and extremal strength of a hypothetical carbon nanotube fabric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假设碳纳米管纳米织物力学性能的离散元模拟
提出了一种微纳米纤维(如碳纳米管、碳纤维和淀粉样原纤维)复合材料和织物建模的通用框架。在这个框架中,纤维用刚体链表示,用弹性键连接。键的弹性利用最近开发的增强向量模型形式。光纤之间相互作用的类型取决于它们的性质和模拟的物理长度尺度。通过修改waLBerla多物理场框架的刚体粒子动力学模块,计算了纤维的动力学特性。我们的建模系统展示了非常高的并行性能,并结合了建模的物理精度。通过对碳纳米管织物的力学测试,证明了该技术的有效性。在这个例子中,纤维的弹性代表了碳纳米管表面的粗粒度共价键,而纤维间的相互作用代表了纳米管圆柱形段之间的粗粒度范德华力。数值模拟证明了碳纳米管织物的稳定性和极限强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1