Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices

Cameron Musco, David P. Woodruff
{"title":"Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices","authors":"Cameron Musco, David P. Woodruff","doi":"10.1109/FOCS.2017.68","DOIUrl":null,"url":null,"abstract":"We show how to compute a relative-error low-rank approximation to any positive semidefinite (PSD) matrix in sublinear time, i.e., for any n x n PSD matrix A, in Õ(n ⋅ poly(k/ε)) time we output a rank-k matrix B, in factored form, for which kA – B║ 2 F ≤ (1 + ε)║A – Ak║2 F , where Ak is the best rank-k approximation to A. When k and 1/ε are not too large compared to the sparsity of A, our algorithm does not need to read all entries of the matrix. Hence, we significantly improve upon previous nnz(A) time algorithms based on oblivious subspace embeddings, and bypass an nnz(A) time lower bound for general matrices (where nnz(A) denotes the number of non-zero entries in the matrix). We prove time lower bounds for low-rank approximation of PSD matrices, showing that our algorithm is close to optimal. Finally, we extend our techniques to give sublinear time algorithms for lowrank approximation of A in the (often stronger) spectral norm metric ║A – B║2 2 and for ridge regression on PSD matrices.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We show how to compute a relative-error low-rank approximation to any positive semidefinite (PSD) matrix in sublinear time, i.e., for any n x n PSD matrix A, in Õ(n ⋅ poly(k/ε)) time we output a rank-k matrix B, in factored form, for which kA – B║ 2 F ≤ (1 + ε)║A – Ak║2 F , where Ak is the best rank-k approximation to A. When k and 1/ε are not too large compared to the sparsity of A, our algorithm does not need to read all entries of the matrix. Hence, we significantly improve upon previous nnz(A) time algorithms based on oblivious subspace embeddings, and bypass an nnz(A) time lower bound for general matrices (where nnz(A) denotes the number of non-zero entries in the matrix). We prove time lower bounds for low-rank approximation of PSD matrices, showing that our algorithm is close to optimal. Finally, we extend our techniques to give sublinear time algorithms for lowrank approximation of A in the (often stronger) spectral norm metric ║A – B║2 2 and for ridge regression on PSD matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正半定矩阵的次线性时间低秩逼近
我们展示了如何在亚线性时间内计算任意正半定(PSD)矩阵的相对误差低秩逼近,即对于任意n x n PSD矩阵a,在Õ(n ⋅poly(k/ε))时,我们以因子形式输出一个秩-k矩阵B,其中kA –b # x2551;2 F ≤(1 + ε)║A –k║2 F,其中Ak是a的最佳秩-秩近似。与A的稀疏度相比不是太大,我们的算法不需要读取矩阵的所有条目。因此,我们显著改进了先前基于遗忘子空间嵌入的nnz(A)时间算法,并绕过了一般矩阵的nnz(A)时间下界(其中nnz(A)表示矩阵中非零条目的数量)。我们证明了PSD矩阵的低秩逼近的时间下界,表明我们的算法是接近最优的。最后,我们扩展了我们的技术,给出了在(通常更强的)谱范数度量║ –中A的低秩近似的亚线性时间算法。B║2 2和用于PSD矩阵的脊回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1