Predator-Miner: ad hoc mining of associations rules within a database management system

W. Tok, Twee-Hee Ong, Wai Lup Low, I. Atmosukarto, S. Bressan
{"title":"Predator-Miner: ad hoc mining of associations rules within a database management system","authors":"W. Tok, Twee-Hee Ong, Wai Lup Low, I. Atmosukarto, S. Bressan","doi":"10.1109/ICDE.2002.994741","DOIUrl":null,"url":null,"abstract":"We present a prototype system, Predator-Miner, which extends Predator with an relational-like association rule mining operator to support data mining operations. Predator-Miner allows a user to combine association rule mining queries with SQL queries. This approach towards tight integration differs from existing techniques of using user-defined functions (UDFs), stored procedures, or re-expressing a mining query as several SQL queries in two aspects. First, by encapsulating the task of association rule mining in a relational operator, we allow association rule mining to be considered as part of the query plan, on which query optimization can be performed on the mining query holistically. Second, by integrating it as a relational operator, we can leverage on the mature field of relational database technology. We extend Predator to support a variant of DMQL, and allow SQL and DMQL to be intermixed in a query. We also demonstrate a cost-based mining query optimization framework.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a prototype system, Predator-Miner, which extends Predator with an relational-like association rule mining operator to support data mining operations. Predator-Miner allows a user to combine association rule mining queries with SQL queries. This approach towards tight integration differs from existing techniques of using user-defined functions (UDFs), stored procedures, or re-expressing a mining query as several SQL queries in two aspects. First, by encapsulating the task of association rule mining in a relational operator, we allow association rule mining to be considered as part of the query plan, on which query optimization can be performed on the mining query holistically. Second, by integrating it as a relational operator, we can leverage on the mature field of relational database technology. We extend Predator to support a variant of DMQL, and allow SQL and DMQL to be intermixed in a query. We also demonstrate a cost-based mining query optimization framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捕食者-挖掘者:在数据库管理系统中对关联规则进行特别挖掘
我们提出了一个原型系统,捕食者-矿工,它扩展了捕食者与一个类似关系的关联规则挖掘算子,以支持数据挖掘操作。掠夺者-挖掘者允许用户将关联规则挖掘查询与SQL查询结合起来。这种实现紧密集成的方法与使用用户定义函数(udf)、存储过程或将挖掘查询重新表示为几个SQL查询的现有技术在两个方面有所不同。首先,通过将关联规则挖掘任务封装在关系操作符中,我们允许将关联规则挖掘视为查询计划的一部分,从而可以在此基础上对挖掘查询整体执行查询优化。其次,通过将其集成为关系运算符,我们可以利用成熟的关系数据库技术领域。我们扩展了Predator以支持DMQL的变体,并允许在查询中混合使用SQL和DMQL。我们还演示了一个基于成本的挖掘查询优化框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out from under the trees [linear file template] Declarative composition and peer-to-peer provisioning of dynamic Web services Multivariate time series prediction via temporal classification Integrating workflow management systems with business-to-business interaction standards YFilter: efficient and scalable filtering of XML documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1