Automatic generation of frequently updated land cover products at national level using COSMO-SkyMed SAR imagery

F. Carbone, A. Coletta, G. F. D. Luca, F. Frate, L. Fasano, G. Schiavon
{"title":"Automatic generation of frequently updated land cover products at national level using COSMO-SkyMed SAR imagery","authors":"F. Carbone, A. Coletta, G. F. D. Luca, F. Frate, L. Fasano, G. Schiavon","doi":"10.1109/IGARSS.2016.7729880","DOIUrl":null,"url":null,"abstract":"SAR images from Italian COSMO-SkyMed mission can have a significant impact on the production and updates of land cover maps. However, for the full exploitation of the data and their application to nationwide extensions, robust automatic procedures need to be designed. In this paper we present the preliminary results obtained by the implementation of a processing scheme using COSMO-SkyMed images to provide, and regularly update every six months, land cover maps for the whole Italian territory. Most of the automatic processing is based on Neural Networks (NN) algorithms. In particular PCNN (Pulse Coupled NN) have been considered for change detection purposes while Multi-Layer Perceptrons (MLP) have been used for classifying the pixels belonging to a detected changed area.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

SAR images from Italian COSMO-SkyMed mission can have a significant impact on the production and updates of land cover maps. However, for the full exploitation of the data and their application to nationwide extensions, robust automatic procedures need to be designed. In this paper we present the preliminary results obtained by the implementation of a processing scheme using COSMO-SkyMed images to provide, and regularly update every six months, land cover maps for the whole Italian territory. Most of the automatic processing is based on Neural Networks (NN) algorithms. In particular PCNN (Pulse Coupled NN) have been considered for change detection purposes while Multi-Layer Perceptrons (MLP) have been used for classifying the pixels belonging to a detected changed area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用COSMO-SkyMed SAR图像自动生成国家级频繁更新的土地覆盖产品
意大利cosmos - skymed任务的SAR图像可以对土地覆盖地图的制作和更新产生重大影响。然而,为了充分利用这些数据并在全国范围内推广应用,需要设计健壮的自动程序。在本文中,我们介绍了通过COSMO-SkyMed图像处理方案的实施获得的初步结果,该方案每六个月定期更新一次意大利全境的土地覆盖地图。大多数自动处理都是基于神经网络(NN)算法。特别是PCNN(脉冲耦合NN)已被考虑用于变化检测目的,而多层感知器(MLP)已被用于对属于检测到的变化区域的像素进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of assimilated SMOS Soil Moisture data for US cropland Soil Moisture monitoring Deployment and performance of the NASA D3R during the GPM OLYMPEx field campaign Building blocks for semiempirical models for forest parameter extraction from interferometric X-band SAR images Synoptic capabilities of the GNSS-R interferometric technique with the SPIR instrument Microwave brightness temperature of snow: Observations and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1