Using Machine Learning to Identify At-risk Students in an Introductory Programming Course at a Two-year Public College

C. Cooper
{"title":"Using Machine Learning to Identify At-risk Students in an Introductory Programming Course at a Two-year Public College","authors":"C. Cooper","doi":"10.21203/rs.3.rs-1096817/v1","DOIUrl":null,"url":null,"abstract":"\n Nationally, more than one-third of students enrolling in introductory computer science programming courses (CS101) do not succeed. To improve student success rates, this research team used supervised machine learning to identify students who are “at-risk” of not succeeding in CS101 at a two-year public college. The resultant predictive model accurately identifies \\(\\approx\\)99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1096817/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nationally, more than one-third of students enrolling in introductory computer science programming courses (CS101) do not succeed. To improve student success rates, this research team used supervised machine learning to identify students who are “at-risk” of not succeeding in CS101 at a two-year public college. The resultant predictive model accurately identifies \(\approx\)99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在两年制公立大学的入门编程课程中,使用机器学习来识别有风险的学生
在全国范围内,超过三分之一的学生注册了计算机科学编程入门课程(CS101),但没有成功。为了提高学生的成功率,该研究团队使用监督机器学习来识别在两年制公立大学CS101课程中“有风险”的学生。由此产生的预测模型准确地识别出\(\approx\) 99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN A Comparison of Methods for Neural Network Aggregation One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1