Enhancement of Epidemiological Models for Dengue Fever Based on Twitter Data

J. Albinati, Wagner Meira Jr, G. Pappa, Mauro M. Teixeira, Cecilia A. Marques-Toledo
{"title":"Enhancement of Epidemiological Models for Dengue Fever Based on Twitter Data","authors":"J. Albinati, Wagner Meira Jr, G. Pappa, Mauro M. Teixeira, Cecilia A. Marques-Toledo","doi":"10.1145/3079452.3079464","DOIUrl":null,"url":null,"abstract":"Epidemiological early warning systems for dengue fever rely on up-to-date epidemiological data to forecast future incidence. However, epidemiological data typically requires time to be available, due to the application of time-consuming laboratorial tests. This implies that epidemiological models need to issue predictions with larger antecedence, making their task even more difficult. On the other hand, online platforms, such as Twitter or Google, allow us to obtain samples of users' interaction in near real-time and can be used as sensors to monitor current incidence. In this work, we propose a framework to exploit online data sources to mitigate the lack of up-to-date epidemiological data by obtaining estimates of current incidence, which are then explored by traditional epidemiological models. We show that the proposed framework obtains more accurate predictions than alternative approaches, with statistically better results for delays greater or equal to 4 weeks.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Epidemiological early warning systems for dengue fever rely on up-to-date epidemiological data to forecast future incidence. However, epidemiological data typically requires time to be available, due to the application of time-consuming laboratorial tests. This implies that epidemiological models need to issue predictions with larger antecedence, making their task even more difficult. On the other hand, online platforms, such as Twitter or Google, allow us to obtain samples of users' interaction in near real-time and can be used as sensors to monitor current incidence. In this work, we propose a framework to exploit online data sources to mitigate the lack of up-to-date epidemiological data by obtaining estimates of current incidence, which are then explored by traditional epidemiological models. We show that the proposed framework obtains more accurate predictions than alternative approaches, with statistically better results for delays greater or equal to 4 weeks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Twitter数据的登革热流行病学模型的改进
登革热流行病学早期预警系统依靠最新的流行病学数据来预测未来的发病率。但是,由于采用耗时的实验室检测,通常需要一段时间才能获得流行病学数据。这意味着流行病学模型需要在更大的前提下发布预测,这使得它们的任务更加困难。另一方面,像Twitter或Google这样的在线平台可以让我们近乎实时地获取用户互动的样本,并可以用作监测当前发病率的传感器。在这项工作中,我们提出了一个利用在线数据源的框架,通过获取当前发病率的估计值来缓解最新流行病学数据的缺乏,然后通过传统的流行病学模型进行探索。我们表明,所提出的框架比其他方法获得更准确的预测,对于大于或等于4周的延迟,统计结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Gene-Disease Relations from Text to Support Biomarker Discovery Towards Health (Aware) Recommender Systems A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications FitBit Garden: A Mobile Game Designed to Increase Physical Activity in Children Health Misinformation in Search and Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1